

AW-CM467-SUR

IEEE 802.11 a/b/g/n/ac and Bluetooth 5.0 Module

Datasheet

Rev. C

DF

(For Standard)

Features

Wi-Fi

- Dual band 802.11 a/b/g/n/ac
- Single-stream spatial multiplexing up to 433.3
 Mbps
- Supports 20, 40, and 80 MHz channels with optional SGI (256 QAM modulation).
- Security: WEP, WPA/WPA2 (personal), AES (HW), TKIP (HW), CKIP (software support)

Bluetooth

- Qualified for Bluetooth Core Specification 5.0 with all Bluetooth 4.2 optional features
- Supports extended synchronous connections (eSCO), for enhanced voice quality by allowing for retransmission of dropped packets.
- Adaptive Frequency Hopping (AFH) for reducing radio frequency interference
- Supports multiple simultaneous Advanced Audio Distribution Profiles (A2DP) for stereo sound.

Revision History

Document NO: R2-2467-DST-04

Version	Revision Date	DCN NO.	Description	Initials	Approved
Α	2021/02/18	DCN020945	Initial Version	JM.Pang	Chihhao Liao
В	2021/08/18	DCN023145	 1.3 Specifications Table update 	JM.Pang	Chihhao Liao
С	2022/01/17	DCN025217	 1.3 Specifications Table update 3.6 Power Consumption update 	JM.Pang	Chihhao Liao

Table of Contents

Features	2
Revision History	3
Table of Contents	4
1. Introduction	5
1.1 Product Overview	5
1.2 Block Diagram	6
1.3 Specifications Table	7
1.3.1 General	7
1.3.2 WLAN	7
1.3.3 Bluetooth	9
1.3.4 Operating Conditions	10
2. Pin Definition	11
2.1 Pin Map	11
2.2 Pin Table	12
2.3 Host Configuration Interface Table	14
3. Electrical Characteristics	15
3.1 Absolute Maximum Ratings	15
3.2 Recommended Operating Conditions	15
3.3 Digital IO Pin DC Characteristics	16
3.4 Host Interface	17
3.4.1 SDIO Interface	17
3.4.2 UART Interface	21
3.5 Power up Timing Sequence	23
3.6 Power Consumption*	26
3.6.1 WLAN	26
3.6.2 Bluetooth	27
4. Mechanical Information	28
4.1 Mechanical Drawing	28
5. Packaging Information	29

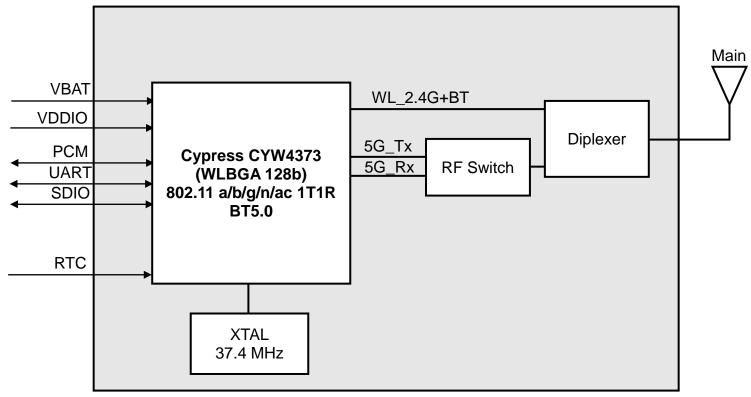
disclosed in whole or in part without prior written permission of AzureWave.

1. Introduction

1.1 Product Overview

The Cypress AW-CM467-SUR device provides the highest level of integration for embedded and IoT wireless systems with integrated single-stream IEEE 802.11a/b/g/n/ac, MAC/baseband/radio and Bluetooth 5.0 (Basic Rate, Enhanced Data Rate and Bluetooth Low Energy).

AW-CM467-SUR supports all rates specified in the IEEE 802.11 a/b/g/n/ac specifications. IEEE 802.11ac's 256-QAM is supported for MCS8 in 20 MHz channels and MCS8/MCS9 in 40 MHz & 80 MHz channels to enable data rates of up to 433.3 Mbps. Included on-chip are 2.4 GHz and 5 GHz power amplifiers and low-noise amplifiers.


The WLAN section supports the following host interface options: an SDIO v3.0 interface that can operate in 4b or 1b mode and a USB 2.0 interface. The Bluetooth section supports USB 2.0, USB 1.1, SDIO and a high-speed 4-wire UART interface. An on-chip USB 2.0 hub provides a shared single USB connection to both WLAN and Bluetooth target devices.

Using advanced design techniques and process technology to reduce active and idle power, the AW-CM467-SUR is designed to address the need of mobile devices that require minimal power consumption and compact size. It includes a power management unit (PMU) which simplifies the system power topology and allows for direct operation from a mobile platform battery while maximizing battery life.

The AW-CM467-SUR implements highly sophisticated enhanced collaborative coexistence hardware mechanisms and algorithms, which ensure that WLAN and Bluetooth collaboration is optimized for maximum performance. As a result, enhanced overall quality for simultaneous voice, video, and data transmission on an embedded and IoT system is achieved.

1.2 Block Diagram

AW-CM467-SUR BLOCK DIAGRAM

1.3 Specifications Table

1.3.1 General

Features	Description
Product Description	IEEE 802.11 a/b/g/n/ac Wireless LAN and Bluetooth Module
Major Chipset	Cypress CYW4373
Host Interface WiFi + BT ● SDIO + UART *For Host configuration interface, please refer to section 2.3	
Dimension	12mm(L) x 12mm(W) x 1.65mm(T)
Form Factor LGA module, 47 pins	
Antenna	1T1R ANT1(Main) : WiFi/Bluetooth → TX/RX
Weight	0.2g

1.3.2 WLAN

Features	Description
WLAN Standard	IEEE 802.11a/b/g/n/ac 1T1R
WLAN VID/PID	N/A
WLAN SVID/SPID	N/A
Frequency Rage	WLAN: 2.4 GHz / 5GHz Band
Modulation	DSSS DBPSK(1Mbps), DQPSK(2Mbps), CCK(11/5.5Mbps) OFDM BPSK(9/6Mbps/MCS0), QPSK(18/12Mbps/MCS1~2), 16-QAM(36/24Mbps/MCS3~4), 64-QAM(72.2/54/48Mbps/MCS5~7), 256-QAM(MCS8~9)
Number of Channels	802.11b: USA, Canada and Taiwan - 1 ~ 11 Most European Countries - 1 ~ 13 Japan - 1 ~ 13 802.11g:

	LICA and Canada 1	11				
	USA and Canada – 1 ~ 11					
	Most European Countries – 1 ~ 13					
	802.11n:					
	USA and Canada – 1 ~	11				
	Most European Countrie	es – 1 ~ 13				
	802.11a:					
	USA - 36, 40, 44, 48, 52	2, 56, 60, 64	. 100. 104. 1	108, 112, 11	16, 120, 124,	
	128, 132, 136, 140, 149					
	2.4G	, 100, 101,	101, 100			
	2.40	Min	Typ	Max	Unit	
	44 (44 14 15 15 15 15 15 15	IVIIII	Тур	IVIAX	Offic	
	11b (11Mbps) @EVM<35%	15	17	19	dBm	
	11g (54Mbps) @EVM≦-25 dB	13	15	17	dBm	
	11n (HT20 MCS7) @EVM≦-27 dB	13	15	17	dBm	
	11n (HT40 MCS7) @EVM≦-27 dB	11	13	15	dBm	
	5G					
Output Power ¹		Min	Тур	Max	Unit	
	│ 11a (54Mbps) │ @EVM≦-25 dB	13	15	17	dBm	
	11n (HT20 MCS7) @EVM≦-27 dB	12	14	16	dBm	
	11n (HT40 MCS7) @EVM≦-27 dB	10	12	14	dBm	
	11ac (VHT20 MCS8) @EVM≦-30 dB	9	11	13	dBm	
	11ac (VHT40 MCS9) @EVM≦-32 dB	7	9	11	dBm	
	11ac (VHT80 MCS9) @EVM≦-32 dB	6	8	10	dBm	
	2.4G					
		Min	Тур	Max	Unit	
	11b (11Mbps)		-87	-84	dBm	
	11g (54Mbps)		-73	-70	dBm	
	11n (HT20 MCS7)		-73	-70	dBm	
Receiver Sensitivity ¹	11n (HT40 MCS7)		-73	-68	dBm	
Receiver Sensitivity		<u> </u>	-11	-00	UDIII	
	5G(n/ac packets with I	LDPC)		_		
		Min	Тур	Max	Unit	
	11a (54Mbps)		-72	-69	dBm	
	11n (HT20 MCS7)		-70	-67	dBm	
	, , ,			•		

8

FORM NO.: FR2-015_A Responsible Department: WBU Expiry Date: Forever The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or

disclosed in whole or in part without prior written permission of AzureWave.

	11n (HT40 MCS7)	-68	-65	dBm		
	11ac (VHT20 MCS8)	-67	-64	dBm		
	11ac (VHT40 MCS9)	-62	-59	dBm		
	11ac (VHT80 MCS9)	-59	-56	dBm		
	802.11b: 1, 2, 5.5, 11Mbps					
	802.11g: 6, 9, 12, 18, 24, 36, 48, 54	Mbps				
Data Data	802.11n: MCS0~7 HT20/HT40	-				
Data Rate	802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps					
	802.11ac: MCS0~8 VHT20					
	802.11ac: MCS0~9 VHT40/VHT80					
	nal) support	for powerf	ul			
	encryption and authentication					
	AES and TKIP acceleration hardware for faster data encryption					
Saarreite.	and 802.11i compatibility					
Security	Wi-Fi Protected Setup (WPS)					
	• WEP					
	CKIP(Software)					
	• WPA3					

^{*} If you have any certification questions about output power please contact FAE directly.

1.3.3 Bluetooth

Features	Description				
Bluetooth Standard	Bluetooth 2.1+Enhance	d Data Rate	(EDR)/BT	3.0/BT4.2/I	BT5.0
Bluetooth VID/PID	N/A				
Frequency Rage	2400~2483.5MHz				
Modulation	GFSK (1Mbps), Π/4DQPSK (2Mbps) and 8DPSK (3Mbps)				
		Min	Тур	Max	Unit
Output Power ¹	Basic rate	6	8	10	dBm
	LE	6	8	10	dBm
		Min	Тур	Max	Unit
	DH5	IVIIII	-84	-81	dBm
Receiver Sensitivity ¹	2DH5		-84	-81	dBm
Receiver Gensitivity	3DH5		-76	-73	dBm
	LE		-86	-83	dBm
			-00	-00	UDIII

¹ Note: this product is under development, and the RF performance is still being fine-tuned, so the relevant values may be subject to change without any notice

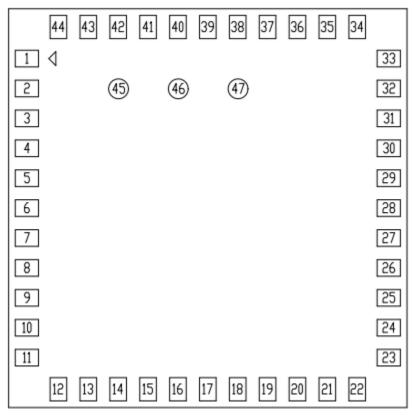
9

FORM NO.: FR2-015_ A

Responsible Department: WBU

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.


1.3.4 Operating Conditions

Features	Description
Operating Conditions	
Voltage	3.2 V- 4.8 V
Operating Temperature	-20°C ~70°C
Operating Humidity	less than 85% R.H.
Storage Temperature	-40°C ~85°C
Storage Humidity	less than 60% R.H.
ESD Protection	
Human Body Model ±2KV per MIL-STD-883H Method 3015.8	
Changed Device Model	±250V per JEDEC EIA/JESD22-C101E

2. Pin Definition

2.1 Pin Map

AW-CM467-SUR Top View Pin Map

2.2 Pin Table

Pin No	Definition	Basic Description	Voltage	Туре
1	GND	Ground.		GND
2	WL_BT_ANT	WLAN/BT RF TX/RX path.		RF
3	GND	Ground.		GND
4	NC	Floating Pin, No connect to anything.		Floating
5	NC	Floating Pin, No connect to anything.		Floating
6	BT_DEV_WAKE	Bluetooth DEV_WAKE.	VDDIO	I/O
7	BT_HOST_WAKE	Bluetooth HOST_WAKE.	VDDIO	I/O
8	NC	Floating Pin, No connect to anything		Floating
9	VBAT	3.3V power pin	3.3V	VCC
10	NC	Floating Pin, No connect to anything.		Floating
11	NC	Floating Pin, No connect to anything.		Floating
12	WL_REG_ON	Used by PMU to power-up or power down the internal CYW4373 regulators used by the WLAN section. Also, when deasserted, this pin holds the WLAN section in reset. This pin has an internal 200 k Ω pull-down resistor that is enabled by default. It can be disabled through programming.	VDDIO	I
13	WL_HOST_WAKE	WL Host Wake.	VDDIO	0
14	SDIO_DATA2	SDIO Data Line 2.	VDDIO	I/O
15	SDIO_DATA3	SDIO Data Line 3.	VDDIO	I/O
16	SDIO_DATA_CMD	SDIO Command Input.	VDDIO	I/O
17	SDIO_DATA_CLK	SDIO Clock Input.	VDDIO	I
18	SDIO_DATA0	SDIO Data Line 0.	VDDIO	I/O
19	SDIO_DATA1	SDIO Data Line 1.	VDDIO	I/O
20	GND	Ground.		GND
21	VIN_LDO_OUT	Internal Buck 1.2V voltage generation pin.	1.4V	0

		comologico, me.		
22	VDDIO	VDDIO supply for WLAN and BT.	1.8V/3.3V	VCC
23	VIN_LDO	Internal Buck 1.2V voltage generation pin.	1.4V	I
24	LPO	External 32K or RTC clock.	0.2~3.3V	I
25	BT_PCM_OUT	PCM data output.	VDDIO	0
26	BT_PCM_CLK	PCM clock; can be master (output) or slave (input).	VDDIO	I/O
27	BT_PCM_IN	PCM data input.	VDDIO	I
28	BT_PCM_SYNC	PCM sync; can be master (output) or slave (input), or SLIMbus data.	VDDIO	I/O
29	STRAP_0	SDIO_PADVDDIO sel	Follow host configuration interface	I
30	NC	Floating Pin, No connect to anything.		Floating
31	GND	Ground.		GND
32	NC	Floating Pin, No connect to anything.		Floating
33	GND	Ground.		GND
34	BT_REG_ON	Used by PMU to power-up or power down the internal CYW4373 regulators used by the Bluetooth section. Also, when deasserted, this pin holds the Bluetooth section in reset. This pin has an internal 200 k Ω pull-down resistor that is enabled by default. It can be disabled through programming.	VDDIO	ı
35	NC	Floating Pin, No connect to anything.		Floating
36	GND	Ground.		GND
37	NC	Floating Pin, No connect to anything.		Floating
38	NC	Floating Pin, No connect to anything.		Floating
39	RF_SW_CTRL5	Programmable RF switch control lines	3.3V	0
40	NC	Floating Pin, No connect to anything.		Floating
41	BT_UART_RTS	UART request-to-send. Active-low request-to-send signal for the HCI UART interface.	VDDIO	0
42	BT_UART_TXD	UART serial output. Serial data output for the HCI UART interface.	VDDIO	0
43	BT_UART_RXD	UART serial input. Serial data input for the HCI UART interface.	VDDIO	I
44	BT_UART_CTS	UART clear-to-send. Active-low clear-to-send signal for the HCI UART interface.	VDDIO	I

13

FORM NO.: FR2-015_A Responsible Department: WBU Expiry Date: Forever The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

45	NC	Floating Pin, No connect to anything.	Floating
46	NC	Floating Pin, No connect to anything.	Floating
47	NC	Floating Pin, No connect to anything.	Floating

2.3 Host Configuration Interface Table

Scenario	WLAN	ВТ	Strap_0 Value
1	SDIO(1.8V)	UART	1
2	SDIO(3.3V)	UART	0

3. Electrical Characteristics

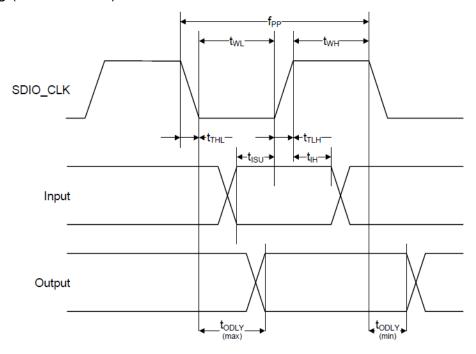
3.1 Absolute Maximum Ratings

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VBAT	DC supply for the VBAT and PA driver supply	-0.5	-	5.5	V
VDDIO	DC supply voltage for digital I/O	-0.5	-	3.9	V
Tj	Maximum junction temperature	-	-	125	°C

3.2 Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VBAT	Power supply for Internal Regulator	3.2	3.6	4.8	V
VDDIO	DC supply voltage for digital I/O	1.62	1.8/3.3	3.63	V

3.3 Digital IO Pin DC Characteristics

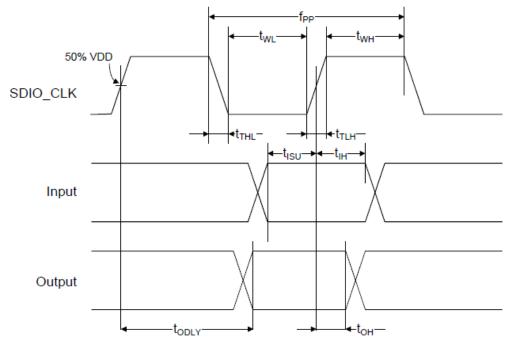

Symbol	Parameter	Minimum	Typical	Maximum	Unit					
Digital I/0	Digital I/O pins, VDDIO=1.8V									
VIH	Input high voltage	0.65 × VDDIO	-	-	V					
VIL	Input low voltage	-	-	0.35 × VDDIO	V					
Vон	Output high voltage	VDDIO – 0.45	-	-	V					
VoL	Output Low Voltage	-	-	0.45	V					
Digital I/0	O pins, VDDIO=3.3V									
V _{IH}	Input high voltage	2.00	-	-	V					
VIL	Input low voltage	-	-	0.80	V					
Vон	Output high voltage	VDDIO – 0.4	-	-	V					
VoL	Output low Voltage	-	-	0.40	V					

3.4 Host Interface

3.4.1 SDIO Interface

SDIO Bus Timing (Default Mode)

SDIO Bus Timing Parameters (Default Mode)


Parameter	Symbol	Minimum	Typical	Maximum	Unit				
SDIO CLK (All values are referred to minimum VIH and maximum VIL)									
Frequency – Data Transfer mode	f _{PP}	0	_	25	MHz				
Frequency – Identification mode	fod	0	_	400	kHz				
Clock low time	tw∟	10	_	_	ns				
Clock high time	twн	10	_	_	ns				
Clock rise time	tтьн	_	_	10	ns				
Clock low time	tтнL	_	_	10	ns				
Inputs: CMD, DAT (referenced to CLK)								
Input setup time	tısu	5	_	_	ns				
Input hold time	tıн	5	_	_	ns				

Outputs: CMD, DAT (referenced to CLK)						
Output delay time – Data Transfer mode	todly	0	_	14	ns	
Output delay time – Identification mode	todly	0	-	50	ns	

SDIO Bus Timing (High-Speed Mode)

SDIO Bus Timing Parameters (High-Speed Mode)

Parameter	Symbol	Minimum	Typical	Maximum	Unit			
SDIO CLK (all values are referred to minimum VIH and maximum VIL ^b)								
Frequency – Data Transfer Mode	f _{PP}	0	_	50	MHz			
Frequency – Identification Mode	fod	0	_	400	kHz			
Clock low time	tw∟	7	_	_	ns			
Clock high time	twн	7	_	_	ns			
Clock rise time	tт∟н	-	_	3	ns			
Clock low time	t⊤⊢∟	_	_	3	ns			
Inputs: CMD, DAT (referenced to CLK)								
Input setup Time	tısu	6	_	_	ns			
Input hold Time	tıн	2	_	_	ns			
Outputs: CMD, DAT (referenced to CLK)								
Output delay time – Data Transfer Mode	todly	_	_	14	ns			
Output hold time	tон	2.5	_	_	ns			

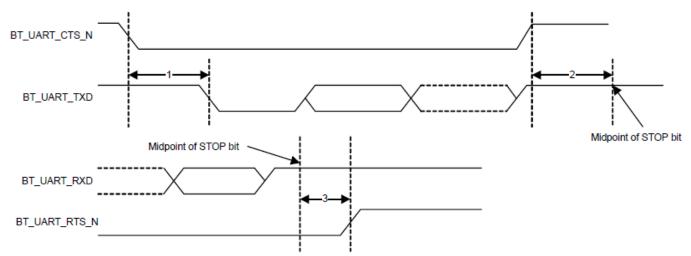
Total system capacitance (each line)	CL	_	_	40	pF
--------------------------------------	----	---	---	----	----

3.4.2 UART Interface

The UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.

UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth UART HCI specification: H4 and a custom Extended H4. The default baud rate is 115.2 Kbaud.

The AW-CM467-SUR UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP).


It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.

Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The AW-CM467-SUR UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2%.

UART Interface Signals

PIN No.	Name	Description	Туре
18	BT_UART_TXD	Bluetooth UART Serial Output. Serial data output for the HCI UART Interface	0
19	BT_UART_RXD	Bluetooth UART Series Input. Serial data input for the HCI UART Interface	I
21	BT_UART_RTS_N	Bluetooth UART Request-to-Send. Active-low request-to-send signal for the HCI UART interface	0
17	BT_UART_CTS_N	Bluetooth UART Clear-to-Send. Active-low clear-to-send signal for the HCI UART interface.	I

UART Timing

	Reference Characteristics	Minimum	Typical	Maximum	Unit
1	Delay time, BT_UART_CTS_N low to BT_UART_TXD valid	_	_	1.5	Bit periods
2	Setup time, BT_UART_CTS_N high before midpoint of stop bit	_	_	0.5	Bit periods
3	Delay time, midpoint of stop bit to BT_UART_RTS_N high	_	_	0.5	Bit periods

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

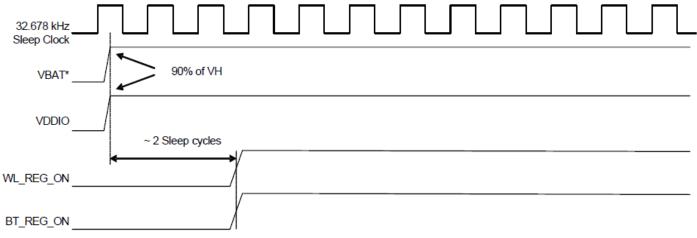
3.5 Power up Timing Sequence

The AW-CM467-SUR has three signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operational states. The timing values indicated are minimum required values; longer delays are also acceptable.

Description of Control Signals

■ WL_REG_ON:

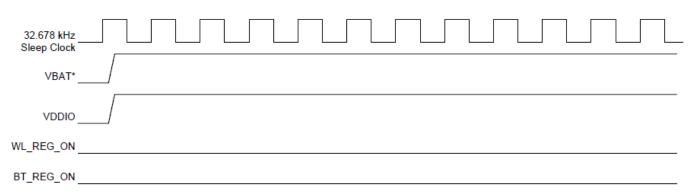
Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON input to control the internal AW-CM467-SUR regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled.


■ BT REG ON:

Used by the PMU (OR-gated with WL_REG_ON) to power up the internal AW-CM467-SUR regulators. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high, the BT section is in reset.

Note:

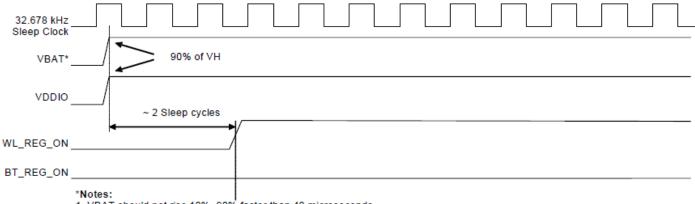
For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 msec time delay between consecutive toggles (where both signals have been driven low). This is to allow time for the CBUCK regulator to discharge. If this delay is not followed, then there may be a VDDIO in-rush current on the order of 36 mA during the next PMU cold start.



*Notes:

- 1. VBAT should not rise 10%-90% faster than 40 microseconds.
- 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

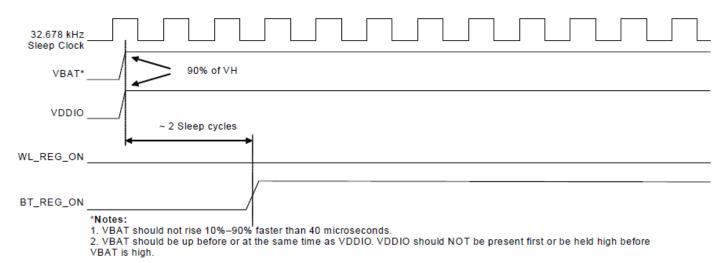
WLAN = ON, Bluetooth = ON



*Notes:

- 1. VBAT should not rise 10%-90% faster than 40 microseconds.
- 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

WLAN = OFF, Bluetooth = OFF



1. VBAT should not rise 10%-90% faster than 40 microseconds.

2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

WLAN = ON, Bluetooth = OFF

WLAN = OFF, Bluetooth = ON

3.6 Power Consumption*

3.6.1 WLAN

No.	14	tem		VBAT=3.3V(mA)			
INO.	II.	lem		Max.		Avg.	
1	WLAN OFF *(1)(2)				0.002		
2	Sleep *(2)(3)			0.004		0.003	
3	Power Save DTIM1 (2.	4GHz) *(2) (4)(5)		58		2.3	
5	Power Save DTIM1 (50	3Hz) *(2)(4) (5)		112		2.0	
Band	Mode	BW	RF Power		Transmit		
(GHz)	Wode	(MHz)	(dBm)	Max.	Avg.	Duty (%)	
	11b@1Mbps	20	17	318	310	93	
2.4	11g@54Mbps	20	15	121	119	25	
	11n@MCS7	40	13	113	112	19	
	11a@54Mbps	20	15	138	136	25	
5	11n@MCS7	40	12	129	128	19	
	11ac@MCS8 NSS1	80	8	131	129	10	
Band	Mode	D\A	/(MHz)		Receive		
(GHz)	Wiode	DVV	(1411 12)	Max.		Avg.	
2.4	11b@1Mbps		20	58		56	
2.4	11n@MCS7	40		68		67	
5	11a@54Mbps		20	73		73	
3	11ac@MCS8 NSS1		80	123		120	

No.	14	em		VDDIO=	1.8V(uA)
NO.	"	em		Max.	Avg.
1	WLAN OFF *(1)			0.0)21
2	Sleep *(3)			249	249
3	Power Save DTIM1 (2.4GHz) *(4) (6)			252	213
Band	Mode	BW	RF Power	Tran	smit
(GHz)	wode	(MHz)	(dBm)	Max.	Avg.
2.4	11b@1Mbps	20	17	40	40
Band	Mode	DW	/MU-\	Rec	eive
(GHz)	iviode	BW(MHz)		Max.	Avg.
2.4	11b@1Mbps		20	40	40

WLAN and Bluetooth OFF (WL_REG_ON=LOW, BT_REG_ON=LOW)

Using normal firmware

⁽²⁾ (3) (4) Run commad "wlfmac_x86 deepsleep 1" into sleep

Associated with AP use ASUS RT-AC66U, DTIM = 1, Beacon Interval = 100 ms

Run the following command and measured a current consumed across the DTIM duration "wl mpc 1"

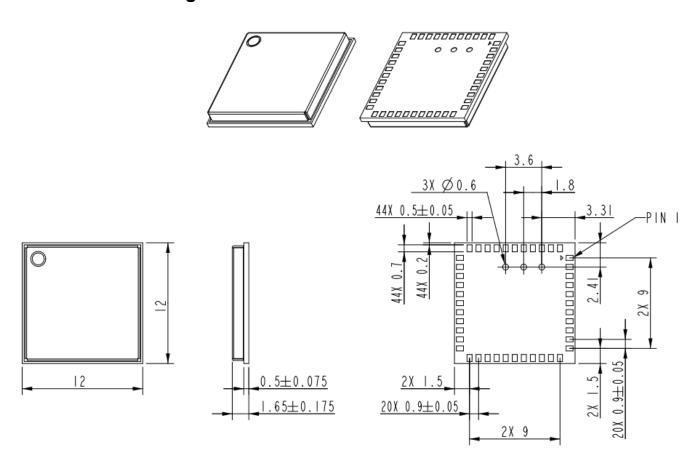
[&]quot;wl PM 2"

[&]quot;wl bcntrim 9"

^{*} The power consumption is based on Azurewave test environment, these data for reference only.

3.6.2 Bluetooth

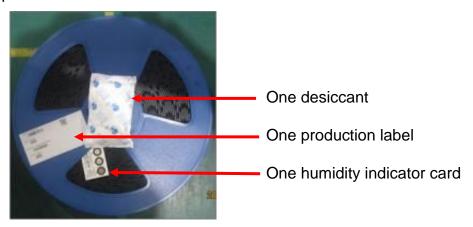
No.	Mode	Packet Type	RF Power	VBAT=	3.3 V
NO.	Wiode	Packet Type	(dBm)	Max.	Avg.
1	Sleep	n/a	n/a	23mA	5.5uA
2	Transmit *(1)	DH5 / 3-DH5	8	41.2mA	40.2mA
3	Receive *(1)	DH5 / 3-DH5	n/a	14.6mA	14.5mA
No.	Mode Packet Type		RF Power	VBAT=	:1.8V
NO.	Wode	Packet Type	(dBm)	Max.	Avg.
1	Sleep	n/a	n/a	279uA	264uA
2	Transmit *(1)	DH5 / 3-DH5	8	19.8uA	19.8uA
3	Receive *(1)	DH5 / 3-DH5	n/a	19.9uA	19.8uA


BlueTool BB_Packet_Length=65535 BlueTool Length_of_Test_Data=37

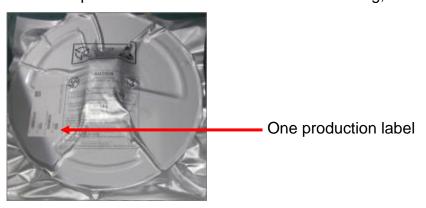
^{*} The power consumption is based on Azurewave test environment, these data for reference only.

4. Mechanical Information

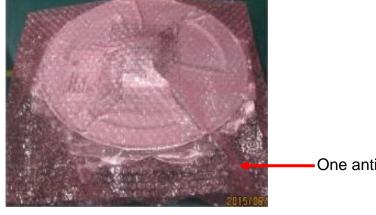
4.1 Mechanical Drawing



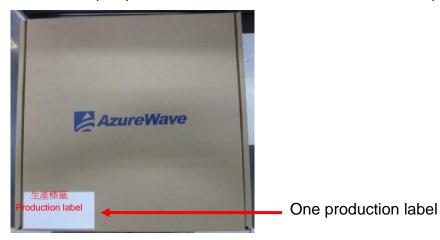
TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0. Imm



5. Packaging Information


- 1. One reel can pack 1,500pcs 12x12 LGA modules
- 2. One production label is pasted on the reel, one desiccant and one humidity indicator card are put on the reel

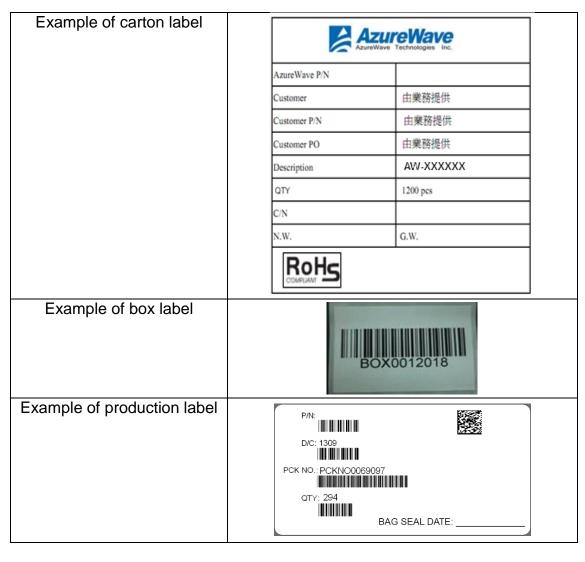
3. One reel is put into the anti-static moisture barrier bag, and then one label is pasted on the bag


4. A bag is put into the anti-static pink bubble wrap

One anti-static pink bubble wrap

5. A bubble wrap is put into the inner box and then one label is pasted on the inner box

6. 5 inner boxes could be put into one carton


7. Sealing the carton by AzureWave tape

8. One carton label and one box label are pasted on the carton. If one carton is not full, one balance label pasted on the carton

Example of balance label	
	屋 数
	Balance
	Dalance