

AW-AM497

IEEE 802.11 a/b/g/n Wi-Fi with ac friendly + Bluetooth 5.2 Combo LGA Module

Datasheet

Rev. H

DF

(For Standard)

Features

WLAN

- Full IEEE 802.11a/b/g/n compatibility with enhanced performance:
- 802.11ac friendly, MCS8 (256-QAM) for 20
 MHz channels in 5 GHz band.
- Single spatial stream with PHY data rates of up to 72.2 Mbps with 802.11n (MCS7) and 78 Mbps with 802.11ac (MCS8).
- 20 MHz channels with optional SGI support for MCS0-MCS7.
- IEEE 802.11ac explicit beamformer support.
- TX and RX low-density parity check (LDPC) support for improved range and power efficiency.
- Receive space-time block coding (STBC)
- On-chip power amplifier/low-noise amplifier for both bands.

Bluetooth

- All optional Bluetooth 5.2 features supported.
- Bluetooth Class 1 or Class 2 transmitter operation.
- Supports BDR (1Mbps), EDR (2/3Mbps), BLE (1/2Mbps).
- Host controller interface (HCI) using a highspeed UART interface.
- PCM for audio data.
- Bluetooth 5.2 compliant with 2 Mbps GFSK data rate for BLE.

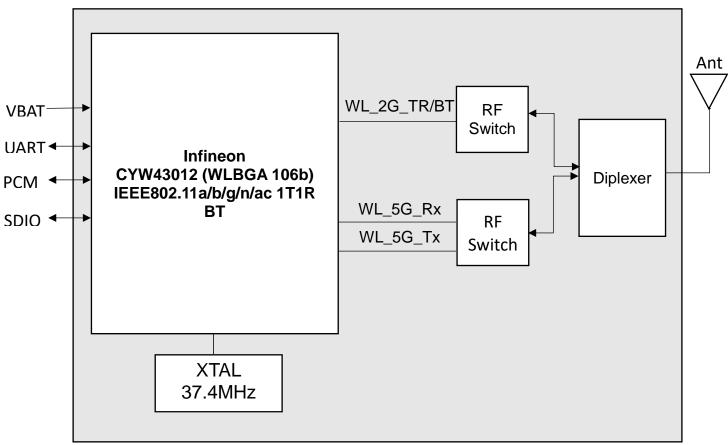
Revision History

Document NO: R2-2497-DST-01

Version	Revision Date	DCN NO.	Description	Initials	Approved
Α	2020/07/27	DCN018259	First Release	QM.TAN	N.C Chen
В	2021/01/26	DCN020584	Re-format	QM.TAN	N.C Chen
С	2021/04/13	DCN021225	 Cypress to Infineon Update ESD Specification Modify BT Rx Specification 	QM.TAN	N.C Chen
D	2021/06/18	DCN022113	Update Power ConsumptionUpdate ESD Specification	QM.TAN	N.C Chen
E	2021/08/19	DCN022947	● Update Pin Out	QM.TAN	N.C Chen
F	2022/04/07	DCN025890	Modified BT Ver. 5.0 to 5.2	QM.TAN	N.C Chen
G	2022/10/04	DCN027596	Modified BT Power Spec	QM.TAN	N.C Chen
Н	2023/04/13	DCN029041	 Removed External Crystal Information 	QM.TAN	N.C Chen

Table of Contents

Revision History	3
1. Introduction	5
1.1 Product Overview	
1.2 Block Diagram	5
1.3 Specifications Table	
1.3.1 General	6
1.3.2 WLAN	6
1.3.3 Bluetooth	8
2. Pin Definition	10
2.2 Pin Table	11
3. Electrical Characteristics	13
3.1 Absolute Maximum Ratings	13
3.2 Recommended Operating Conditions	13
3.3 Digital IO Pin DC Characteristics	13
3.4 Power up Timing Sequence	14
3.4.1 SDIO Host Interface Specification	14
3.4.2 UART Interface	16
3.4.3 Sequencing of Reset and Regulator Control Signals	18
3.5 Power Consumption [*]	22
3.5.1 WLAN	22
3.5.2 Bluetooth	23
3.6 Frequency Reference	24
4. Mechanical Information	25
5. Packaging Information	26



1. Introduction

1.1 Product Overview

The Infineon CYW43012 single-chip device integrates a IEEE 802.11a/b/g/n compliant 802.11ac-friendly MAC/baseband/radio and Bluetooth 5.2 + EDR (enhanced data rate). It provides a small form-factor solution with minimal external components to drive down cost for mass volumes and allows for handheld device flexibility in size, form, and function. Comprehensive power management circuitry and software ensure the system can meet the needs of highly mobile devices that require minimal power consumption and reliable operation.

1.2 Block Diagram

AW-AM497 Block Diagram

1.3 Specifications Table

1.3.1 General

Features	Description
Product Description	IEEE 802.11 a/b/g/n Wi-Fi with ac friendly + Bluetooth 5.2 Combo LGA Module
Major Chipset	CYW43012 (WLBGA 106p)
Host Interface	WiFi + BT ● SDIO + UART
Dimension	12.0mm(L) x 12.0mm(W) x 1.75 mm(H)
Form Factor	LGA module, 47 pins
Antenna	For LGA, "1T1R, external" ANT1(Main): WiFi/Bluetooth → TX/RX
Weight	0.5g

1.3.2 WLAN

Features	Description
WLAN Standard	IEEE802.11 a/b/g/n/ac 1T1R
WLAN VID/PID	N/A
WLAN SVID/SPID	N/A
Frequency Rage	2.4 GHz ISM Bands 2.412-2.472 GHz 5.15-5.25 GHz (FCC UNII-low band) for US/Canada and Europe 5.25-5.35 GHz (FCC UNII-middle band) for US/Canada and Europe 5.47-5.725 GHz for Europe 5.725-5.825 GHz (FCC UNII-high band) for US/Canada
Modulation	802.11a/g/n/ac: OFDM 802.11b: CCK(11, 5.5Mbps), DQPSK(2Mbps), BPSK(1Mbps)
Number of Channels	802.11b: USA, Canada and Taiwan – 1 ~ 11 Most European Countries – 1 ~ 13 802.11g: USA and Canada – 1 ~ 11 Most European Countries – 1 ~ 13 802.11n:

AzureWave Te	chnologies, Inc.						
	USA and Canada – 1 ~						
	Most European Countrie	es – 1 ~ 13					
	802.11a:			100 11-	110 100		
	USA – 36, 40, 44, 48, 5				, 116, 120,		
	124, 128, 132, 136, 140), 149, 153,	157, 161, 1	65			
	2.4G						
	441 (441)	Min	Тур	Max	Unit		
	11b (11Mbps) @EVM<35%	16	18	20	dBm		
	11g (54Mbps)	40	4.5	47	-ID		
	@EVM≦-25 dB	13	15	17	dBm		
	11n (HT20 MCS7)						
Output Power	@EVM≦-27 dB	13	15	17	dBm		
(Board Level Limit)*	5G			_			
		Min	Тур	Max	Unit		
	11a (54Mbps)	11	40	15	dBm		
	@EVM≦-25 dB	11	13	15	UDIII		
	11n (HT20 MCS7)			15			
	@EVM≤-27 dB	11	13		dBm		
	11ac (VHT20 MCS8)		10	12			
	@EVM≤-30 dB	8			dBm		
	2.4G						
	2.40	Min	Тур	Max	Unit		
	11b (11Mbps)	IVIIII	-89	-86	dBm		
	11g (54Mbps)	_	-77	-74	dBm		
	11n (HT20 MCS7)	-			dBm		
Desciver Consitivity		-	-77	-74	ubiii		
Receiver Sensitivity	5G						
		Min	Тур	Max	Unit		
	11a (54Mbps)	-	-75	-72	dBm		
	11n (HT20 MCS7)	-	-75	-72	dBm		
	11ac (VHT20 MCS8)	-	-72	-69	dBm		
	802.11b: 1, 2, 5.5, 11Mb	ops			,		
Data Rate	802.11a/g: 6, 9, 12, 18,		54Mbps				
Data Kate	802.11n:MCS0~7		•				
	802.11ac:MCS0~8						
	◆ WEP						
Security	◆ WPA Personal, WPA2 Personal, WPA3 Personal						
Occurry	◆ WMM, WMM-PS (U-APSD), WMM-SA, AES (hardware						
	accelerator)						

7

FORM NO.: FR2-015_A Responsible Department : WBU

Expiry Date: Forever

[◆] TKIP (hardware accelerator)

1.3.3 Bluetooth

Features			Description				
Bluetooth Standard	Bluetooth 5.2 (C	ore Specific	cation)				
Bluetooth VID/PID	N/A	N/A					
Frequency Rage	2402MHz~2480I	402MHz~2480MHz					
Modulation		Header GFSK Payload 2M: 4-DQPSK Payload 3M: 8DPSK					
Output Power	Basic Rate Low Energy	Min 3 3	Тур	Max 10 10	Unit dBm dBm		
Receiver Sensitivity	BT Sensitivity (B BDR EDR (2DH5) EDR (3DH5)	ER<0.1%) Min	Typ -92 -92 -87	-87 -87 -82	Unit dBm dBm dBm		
	Low Energy		-95	-90	dBm		

[◆] CKIP (software support)

^{*} If you have any certification questions about output power please contact FAE directly.

1.3.4 Operating Conditions

Features	Description				
	Operating Conditions				
Voltage	VBAT: 3.2~4.4V VIO: 1.8V				
Operating Temperature	-20°C to +70°C				
Operating Humidity	less than 85% R.H.				
Storage Temperature	-40°C to +125°C				
Storage Humidity	less than 60% R.H.				
	ESD Protection				
Human Body Model	1.5KV per MIL-STD-883H Method 3015.8				
Changed Device Model	500V per JEDEC EIA/JESD22-C101E				

2. Pin Definition

2.1 Pin Map

	44	43	42	41	40	39	38	37	36	35	34	
1	\triangleleft											33
2			(45)		(46)		<u>47</u>)					32
3												31
4												30
5												29
6												28
7												27
8												26
9												25
10												24
11												23
	12	13	14	15	16	17	18	19	20	21	22	

AW-AM497 Pin Map (Top View)

2.2 Pin Table

Pin No	Definition	Basic Description	Voltage	Туре
1	GND1	Ground.		GND
2	WL_BT_ANT	WLAN/BT RF TX/RX path.		RF
3	GND2	Ground.		GND
4	NC1	Floating		I/O
5	NC2	Floating		I/O
6	BT_WAKE	BT Device Wake		I
7	BT_HOST_WAKE	BT Host Wake		0
8	CLK_REQ	Reference clock request		I/O
9	VBAT	3.3V power pin	3.3V	VCC
10	NC3	Floating		I
11	NC4	Floating		0
12	WL_REG_ON	Used by PMU to power up or power down the internal regulators used by the WLAN section. Also, when deasserted, this pin holds the WLAN section in reset. This pin has an internal 200k ohm pull down resistor that is enabled by default. It can be disabled through programming.		ı
13	WL HOST WAKE	WL Host Wake		0
14	SDIO DATA 2	SDIO Data Line 2		I/O
15	SDIO_DATA_3	SDIO Data Line 3		I/O
16	SDIO_CMD	SDIO Command Input		I/O
17	SDIO CLK	SDIO Clock		ı "c
18	SDIO_DATA_0	SDIO Data Line 0		I/O
19	SDIO DATA 1	SDIO Data Line 1		I/O
20	GND3	Ground.		GND
21	VIN_LDO_OUT	Internal Buck voltage generation pin		VCC
22	VDDIO	1.8V VDDIO supply for WLAN and BT	1.8V	VCC
23	VIN_LDO	Internal Buck voltage generation pin		VCC
24	LPO	External 32K or RTG clock		I
25	PCM OUT	PCM data out		Ō
26	PCM CLK	PCM clock		I/O
27	PCM IN	PCM data input		
28	PCM SYNC	PCM Synchronization control		Ō
29	NC5	Floating		I/O
30	NC6	Floating		Floating
31	GND4	Ground.		GND
32	NC7	Floating		I/O
33	GND5	Ground.		GND
34	BT_REG_ON	Used by PMU to power up or power down the		

		internal regulators used by the Bluetooth	
		section. Also, when deasserted, this pin holds	
		the Bluetooth section in reset. This pin has an	
		internal 200k ohm pull down resistor that is	
		enabled by default. It can be disabled through	
		programming.	
35	NC8	Floating	I/O
36	GND	Ground	GND
37	GPIO6	GPIO configuration pin	I/O
38	GPIO4	SECI_IN	I/O
39	GPIO2	GPIO configuration pin	I/O
40	GPIO5	SECI_OUT	I/O
41	UART_RTS_N	High-Speed UART RTS	0
42	UART_TXD	High-Speed UART Data Out	0
43	UART_RXD	High-Speed UART Data In	
44	UART_CTS_N	High-Speed UART CTS	
45	TP1	Floating	I/O
46	TP2	Floating	I/O
47	GPIO1_P7	GPIO configuration pin	I/O

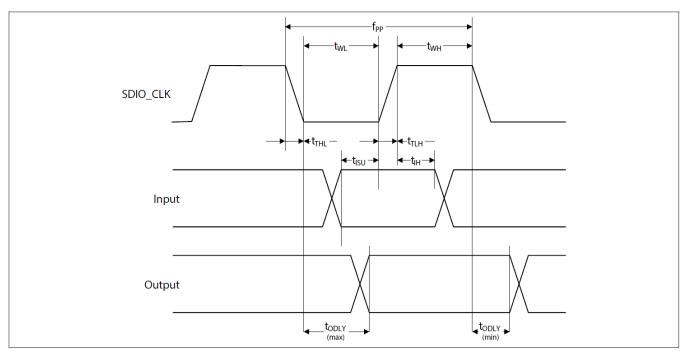
3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VBAT	DC supply for the VBAT and PA driver supply	-0.5	-	+5.0	V
V IO	DC supply voltage for digital I/O	-0.5	-	2.20	V
VDDIO RF	DC supply voltage for RF switch I/Os	-0.5	-	4.10	V
Tj	Maximum junction temperature	-	-	125	°C
TBD	Maximum input power for RX input portsb	-	-	0	dBM

3.2 Recommended Operating Conditions

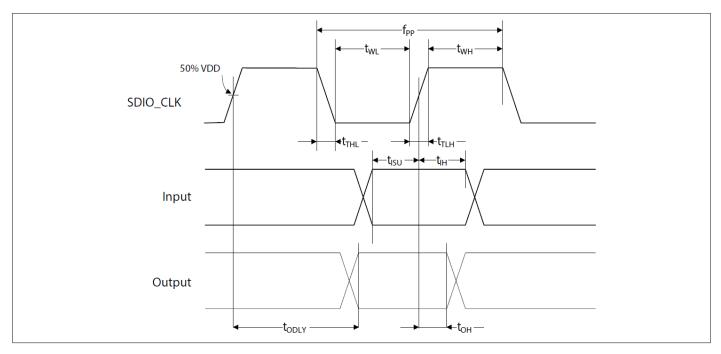
Symbol	Parameter	Minimum	Typical	Maximum	Unit
VBAT	Power supply for Internal Regulator and FEM	3.2	3.6	4.4	V
VDDIO	DC supply voltage for digital I/O	1.62	1.8	1.98	V


3.3 Digital IO Pin DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VIH	Input high voltage (VDDIO)	0.65 x VDDIO	-	-	V
VIL	Input low voltage (VDDIO)	-		0.35 × VDDIO	V
VOH	Output High Voltage @ 2mA	VDDIO – 0.45	-	-	V
VOL	Output Low Voltage @ 2mA	-	-	0.45	V

3.4 Power up Timing Sequence

3.4.1 SDIO Host Interface Specification



SDIO Bus Timing (Default Mode)

Parameter Parameter	Symbol	Minimum	Typical	Maximu m	Unit			
SDIO CLK (All values are referred to minimum VIH and maximum VIL)								
Frequency – Data Transfer mode	f _{PP}	0	_	25	MHz			
Frequency – Identification mode	fod	0	ı	400	kHz			
Clock low time	t _{WL}	10	ı	_	ns			
Clock high time	twн	10	-	_	ns			
Clock rise time	tтьн	_	-	10	ns			
Clock low time	tthl	_	-	10	ns			
Inputs: CMD,	DAT (refer	enced to C	LK)					
Input setup time	tısu	5	-	_	ns			
Input hold time	tıн	5	ı	_	ns			
Outputs: CMD, DAT (referenced to CLK)								
Output delay time – Data Transfer mode	todly	0	-	14	ns			
Output delay time – Identification mode	todly	0		50	ns			

SDIO Bus Timing Parameters (Default Mode)

SDIO Bus Timing (High-Speed Mode)

Parameter	Symbol	Minimum	Typical	Maximum	Unit				
SDIO CLK (all values are referred to minimum VIH and maximum VIL									
Frequency – Data Transfer Mode	f₽₽	0	_	50	MHz				
Frequency – Identification Mode	f _{OD}	0	_	400	kHz				
Clock low time	tw∟	7	_	_	ns				
Clock high time	tw⊢	7	-	1	ns				
Clock rise time	t⊤∟н	_	-	3	ns				
Clock low time	tthl	_	ı	3	ns				
Inputs: CMI	D, DAT (ref	fer- enced t	o CLK)						
Input setup Time	tısu	6	_	_	ns				
Input hold Time	tıH	2	-	1	ns				
Outputs: CM	Outputs: CMD, DAT (refer- enced to CLK)								
Output delay time – Data Transfer Mode	todly	_	_	14	ns				
Output hold time	tон	2.5	_	_	ns				
Total system capacitance (each line)	CL	_	_	40	pF				

SDIO Bus Timing a Parameters (High-Speed Mode)

3.4.2 UART Interface

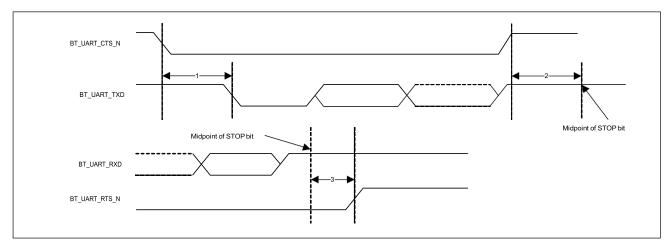
The BT HCI UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 115200 bps to 4.0 Mbps.

The interface features an automatic baud rate detection capability that returns a baud rate selection. The baud rate may be changed using a vendor-specific UART HCI command.

The UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth UART HCI H4 specification. The default baud rate is 115.2 Kbaud.

The AW-AM497 UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP).

It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.


Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers.

The AW-AM497 UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2%.

UART Interface Signals

Pin Number	Signal Name	Description	Туре
42	BT_UART_TXD	Bluetooth UART Serial Output. Serial data output for the HCI UART Interface	0
43	BT_UART_RXD	Bluetooth UART Series Input. Serial data input for the HCI UART Interface	I
41	BT_UART_RTS_N	Bluetooth UART Request-to-Send. Active-low request-to-send signal for the HCI UART interface	I
44	BT_UART_CTS_N	Bluetooth UART Clear-to-Send. Active-low clear-to- send signal for the HCI UART interface.	0

UART Timing

	Reference Characteristics	Minimum	Typical	Maximum	Unit
1	Delay time, BT_UART_CTS_N low to BT_UART_TXD valid	_	ı	1.5	Bit periods
2	Setup time, BT_UART_CTS_N high before midpoint of stop bit	_	ı	0.5	Bit periods
3	Delay time, midpoint of stop bit to BT_UART_RTS_N high	_	1	0.5	Bit periods

UART Timing Specifications

3.4.3 Sequencing of Reset and Regulator Control Signals

The AW-AM497 has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operational states. The timing values indicated are minimum required values; longer delays are also acceptable.

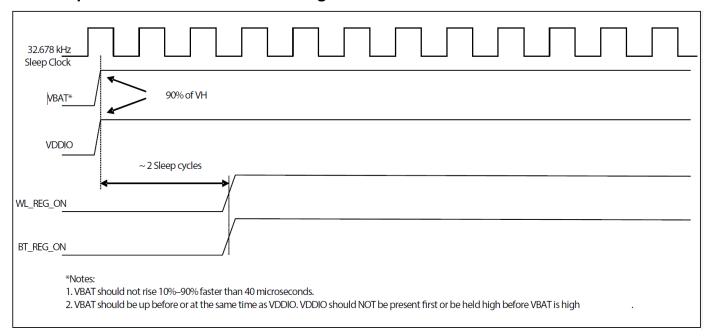
Description of Control Signals

WL_REG_ON: Used by the PMU to power-up the WLAN section. It is also OR-gated with the BT_REG_ON input to control the internal AW-AM497 regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled.

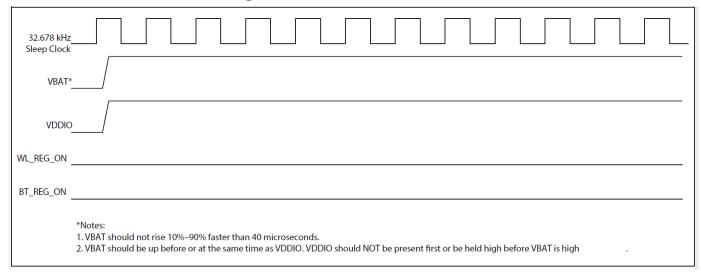
BT_REG_ON: Used by the PMU (OR-gated with WL REG ON) to power-up the internal AW-AM497 regulators. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high, the BT section is in reset.

Note: The AW-AM497 has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms after VDDC and VDDIO have both passed the POR threshold. Wait at least 150 ms after VDDC and VDDIO are available before initiating Host SDIO, UART or SPI accesses.

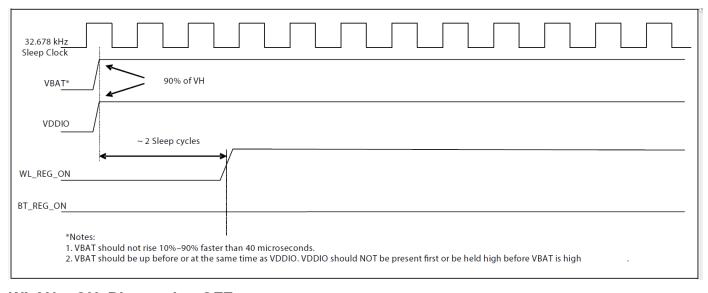
Note: VBAT should not rise 10%–90% faster than 40 microseconds. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.


Power-Up/Power-Down/Reset Circuits

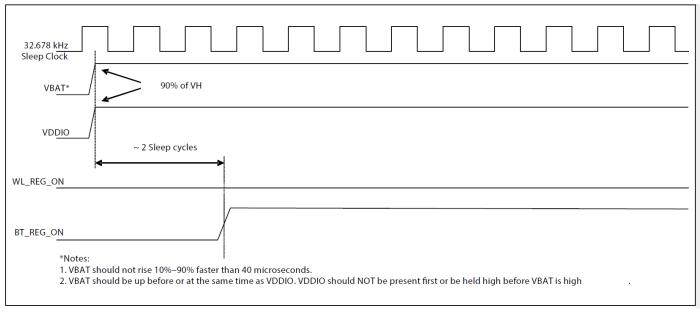
The AW-AM497 has two signals that enable or disable the Bluetooth and WLAN circuits and the internal regulator blocks, allowing the host to control power consumption.



Signal	Description
WL_REG_ON	This signal is used by the PMU (with BT_REG_ON) to power-up the WLAN section. It is also OR-gated with the BT EG ON input to control the internal AW-AM497 regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low, the WLAN section is in reset. If BT_REG_ON and WL_REG_ON are both low, the regulators are disabled. This pin has an internal 50 kΩ pull-down resistor that is auto enabled and disabled when the input is low and high, respectively
BT_REG_ON	This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down the internal AW-AM497 regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be disabled. This pin has an internal 50 k Ω pull-down resistor that is auto enabled and disabled when the input is low and high, respectively.


Power-Up/Power-Down/Reset Control Signals

WLAN = ON, Bluetooth = ON



WLAN = OFF, Bluetooth = OFF

WLAN = ON, Bluetooth = OFF

WLAN = OFF, Bluetooth = ON

3.5 Power Consumption*

3.5.1 WLAN

No	No. Item			VE	BAT=3.3	V(mA)	
NO.				Max.		Avg.	
1	WLAN OFF *(1)			1.9uA			
2	Sleep *(3)			3.0uA		2	2.9uA
3	Power Save DTIM1 (2.	4GHz) *(4) (6)		14.1mA		3	309uA
4	Power Save DTIM3 (2.	4GHz) *(5) (6)		23.1mA		2	233uA
5	Power Save DTIM1 (50	3Hz) *(4) (6)		14.2mA		2	230uA
6	Power Save DTIM3 (50	3Hz) *(5) (6)		15.5mA		1	27uA
Band		BW	RF Power		Transı	mit	
(GHz)	Mode	(MHz)	(dBm)	Max.	Av	g.	Duty (%)
	11b@1Mbps	20	18	202	20	1	98
2.4	11g@54Mbps	20	15	124	122		64
	11n@MCS7	20	15	119	11	8	67
	11a@54Mbps	20	13	177	17	6	66
5	11n@MCS7	20	13	173	17	2	68
	11ac@MCS8 NSS1	20	10	154	15	3	49
Band	Mode	DW/MU=)			Recei	ive	
(GHz)	Wode	BW(MHz)		Max.			Avg.
2.4	11b@1Mbps	20		21.1	1		19.8
2.4	11n@MCS7	20		20.8		20.1	
5	11a@54Mbps	20		23.2			22.3
J	11ac@MCS8 NSS1		20	24.1			23.1

^{*} The power consumption is based on Azurewave test environment, these data for reference only.

No.	Item			VDDIO	=1.8 V
140.	10	EIII		Max.	Avg.
1	WLAN OFF *(1)			0.29	9uA
2	Sleep *(3)			105uA	105uA
3	Power Save DTIM1 (2.4GHz) *(4) (6)			376uA	111uA
Band	Mode BW RF Power Transmit		smit		
(GHz)	Wiode	(MHz)	(dBm)	Max.	Avg.
2.4	11b@1Mbps	20	18	2.3mA	2.3mA
Band	Mode	BW(MHz)		Rece	eive
(GHz)	iviode			Max.	Avg.
2.4	11b@1Mbps		20	429uA	424uA

3.5.2 Bluetooth

No.	Mode	Dooket Type	RF Power	VBAT=3.3 V		
NO.	Wiode	Packet Type	(dBm)	Max.	Avg.	
1	Sleep	n/a	n/a	3.8uA	2.9uA	
2	Transmit *(1)	DH5	9.5	24mA	23mA	
3	Receive *(1)	DH5	n/a	9.6mA	9.5mA	
4	Transmit*(2)	LE	9.4	19.9mA	19.7mA	
5	Receive	LE	n/a	10.4mA	10.4mA	

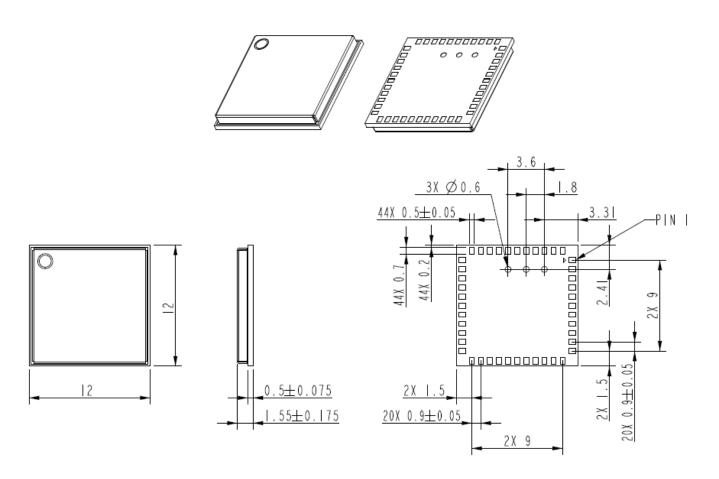
^{*} The power consumption is based on Azurewave test environment, these data for reference only.

3.6 Frequency Reference

An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative, an external frequency reference may be used. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.

External 32.768KHz Low-Power Oscillator

The AW-AM497 uses a secondary low frequency clock for low-power-mode timing. Either the internal low- precision LPO or an external 32.768 kHz precision oscillator is required. The internal LPO frequency range is approximately 33 kHz ± 30% over process, voltage, and temperature, which is adequate for some applications. However, one trade-off caused by this wide LPO tolerance is a small current consumption increase during power save mode that is incurred by the need to wake-up earlier to avoid missing beacons. Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock that meets the requirements listed in below.


Parameter	LPO Clock	Units
Nominal input frequency	32.768	kHz
Frequency accuracy	±250	ppm
Duty cycle	30–70	%
Input signal amplitude	500–1800	mV, p-p
Signal type	Square-wave or sine-wave	
Input impedance a	>100k	Ω

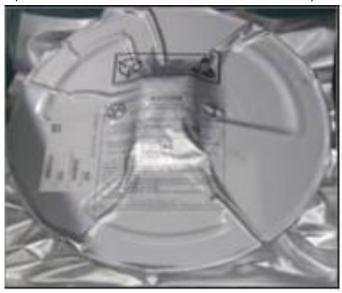
External 32.768 kHz Sleep Clock Specifications

4. Mechanical Information

4.1 Mechanical Drawing

TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0. Imm

Unit:mm


5. Packaging Information

- 1. One reel = 1,500pcs 12*12 LGA module. (一卷數量為 1500pcs.)
- One production label is pasted on the reel.One desiccant & one humidity indicator card are put on the reel.

(卷軸貼上一張生產標籤,同時放上一包防潮包及濕度指示卡.)

3.One reel is put into the anti-static moisture barrier bag with one production label on the bag. (卷軸放進入防靜電鋁袋,再貼上生產標籤.)

4. The anti-static reel is put into the pink bubble wrap.

(防靜電鋁箔袋放進氣泡袋.)

Then put into the inner box with one production label pasted on the box.

(氣泡袋放進內箱中,再貼上一張生產標籤.)

5. One outer box contained 5 inner boxes.

(一個外箱可放五個內箱盒.)

6. Sealing the carton with Azurewave logo tape. (使用海華 Logo 膠帶將外箱進行工字型封箱)

7. One carton label and one box label are pasted on the carton. If one carton is not full, one balance label will be pasted on the carton (外箱上貼附出貨標籤和箱號標籤;如不滿箱,需貼附尾數標籤)

