

AW-CH397

IEEE 802.11 2X2 MIMO ac/a/b/g/n Wireless LAN + Bluetooth SIP Module

Datasheet

Version 0.7

Inspired by wireless

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any
 loss suffered or expenditure due to the misuse of any information form this document.

Document release	Date	Modification	Initials	Approved
Version0.1	2013/11/11	Initial version	Kai Wu	Chihhao Liao
Version0.2	2014/01/20	Add pin define & outline drawing	Peter Chen	Chihhao Liao
Version0.3	2014/03/17	Modify module height	Peter Chen	Chihhao Liao
Version0.4	2014/04/07	Modify Mechanical Information Modify Package Outline Drawing Modify Recommended Operating Conditions of Vio/Vio_SD/Vio_RF	Peter Chen	Chihhao Liao
Version0.5	2014/10/20	Add WiFi Tx power & Sensitivity	Peter Chen	Chihhao Liao
Version0.6	2015/10/21	support to BT4.2	Peter Chen	Chihhao Liao
Version0.7	2018/08/20	 Update Operating Temperature Remove NFC function Update support interface configuration 	Peter Chen	NC Chen

1. General Description

1-1. Product Overview and Functional Description

AzureWave Technologies, Inc. introduces the IEEE 802.11ac/a/b/g/n 2X2 MIMO WLAN & Bluetooth SIP module --- AW-CH397. The module is targeted to mobile devices including Notebook, TV, Tablet and Gaming Device which need small package module, low power consumption, multiple interfaces and OS support. By using AW-CH397, the customers can easily enable the Wi-Fi, and BT embedded applications with the benefits of high design flexibility, short development cycle, and quick time-to-market.

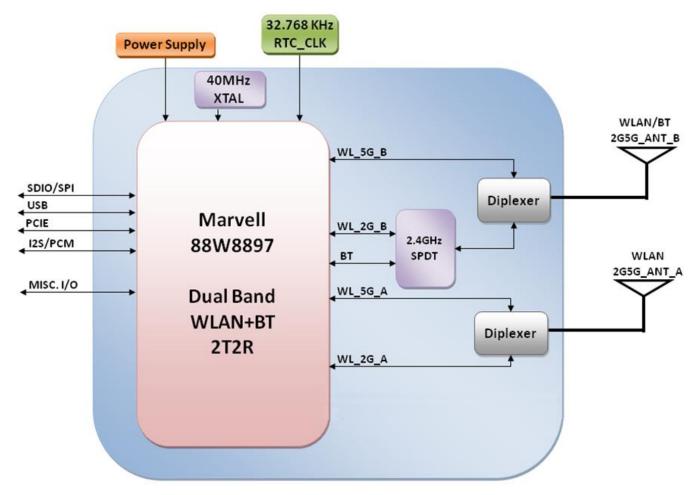
Compliance with the IEEE 802.11ac/a/b/g/n standard, the AW-CH397 uses Direct Sequence Spread Spectrum (DSSS), Orthogonal Frequency Division Multiplexing (OFDM), DBRSK, DQPSK, CCK and QAM baseband modulation technologies. A high level of integration and full implementation of the power management functions specified in the IEEE 802.11 standard minimize the system power requirements by using AW-CH397. In addition to the support of WPA/WPA2 and WEP 64-bit and 128-bit encryption, the AW-CH397 also supports the IEEE 802.11i security standard through the implementation of Advanced Encryption Standard (AES)/Counter Mode CBC-MAC Protocol (CCMP), Wired Equivalent Privacy (WEP) with Temporal Key Integrity Protocol (TKIP), Advanced Encryption Standard (AES)/Cipher-Based Message Authentication Code (CMAC), and WLAN Authentication and Privacy Infrastructure (WAPI) security mechanisms

For the video, voice and multimedia applications the AW-CH397 support **802.11e Quality of Service** (**QoS**). The device also supports **802.11h Dynamic Frequency Selection (DFS)** for detecting radar pulses when operating in the 5GHz range.

For Bluetooth operation, AW-CH397 is Bluetooth 4.2 (supports Low Energy).

AW-CH397 supports **SDIO**, **PCIE**, **USB**, and high speed **UART interfaces** for WLAN and Bluetooth to the host processor.

AW-CH397 is suitable for multiple mobile processors for different applications with the support **cellular phone co-existence including LTE**.


AW-CH397 module adopts Marvell's latest highly-integrated dual-band WLAN & Bluetooth SoC---88W8897. All the other components are implemented by all means to reach the mechanical specification required.

Inspired by wireless

1-2. Block Diagram

A simplified block diagram of the AW-CH397 module is depicted in the figure below.

AW-CH397 BLOCK DIAGRAM

Note: Interface supports and combinations as shown below:

Scenario	WLAN	ВТ	BT_AMPS	Firmware Download I/F	Firmware Download Mode	Configuration*
1	SDIO	SDIO		SDIO	Serial	CON[3:0]=b'0001
2	SDIO	SDIO	SDIO	SDIO	Serial	CON[3:0]±b'0111
3	PCle	UART		PCIe + UART	Parallel	CON[3:0]=b'1111
4	PCle	UART		PCIe or UART	Serial	CON[3:0]∍b'1100
5	PCIe	USB	USB	PCIe	Serial	CON[3:0]=b'1110

*Configuration pins:

Configuration	Pin No	Pin Name
CON[3]	K8	CONFIG_HOST[3]
CON[2]	K7	CONFIG_HOST[2]
CON[1]	K5	CONFIG_HOST[1]
CON[0]	K6	CONFIG_HOST[0]

1-3.Key feature:

- Small footprint: 10.0mm(L) x 12.3mm(W) x 1.0mm(H)Max
- SDIO3.0, G-SPI, USB interfaces support for WLAN
- High speed UART,PCM/Inter-IC Sound(I2S) and SDIO3.0, USB for Bluetooth
- Bluetooth 4.2 also complaint with Bluetooth 2.1 + Enhanced Data Rate (EDR)
- Audio Codec interface support
- Cellular phone co-existence support
- Multiple power saving modes for low power consumption
- IEEE 802.11i for advanced security
- Quality of Service (QoS) support for multimedia applications
- Drip-in WLAN Linux drivers are Android ready and validated on Android based systems.
- Support for Linux kernel versions up to 2.6.32.
- Support for BlueZ v4.47 Bluetooth profiles stack used in Android Éclair
- Simultaneous AP-STA
- Support China WAPI
- Lead-free design

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

1-4. Specifications Table

Model Name	AW-CH397
Product Description	2x2 MIMO Wireless LAN + Bluetooth Combo Module
WLAN Standard	IEEE 802.11ac/a/b/g/n, Wi-Fi compliant
Bluetooth Standard	Bluetooth 4.2 complaint with Bluetooth 2.1+Enhanced Data Rate (EDR)
Host Interface	 ◆ SDIO 3.0 device interface (SPI, 1-bit SDIO, 4-bit SDIO transfer modes at full clock range up to 208 MHz) ◆ PCIe v3.0 (2.5 Gbps) interface ◆ USB 2.0 interface with LPM support ◆ High-Speed UART interface
Major Chipset	Marvell 88W8897
Dimension	10.0mm x 12.3mm x 1.0mm(Max)
Weight	0.34g
Package	LGA
Operating Conditions	
Voltage	3.3V+- 10%
Temperature	Operating: -30 ~ +85 °C ; Storage: -40 ~ 85°C
Electrical Specifications	
Frequency Range	2.4 GHz ISM radio band / 5 GHz Unlicensed National Information Infrastructure (U-NII) band
Number of Channels	802.11a: USA, Taiwan – 12/4 Most European Countries –19 Japan – 4 802.11b: USA, Canada and Taiwan – 11 Most European Countries – 13 France – 4 802.11g: USA, Canada and Taiwan – 11 Most European Countries – 13 Japan – 13 802.11n(HT20): Channel 1~13(2412~2472) 802.11n(HT40): Channel 1~7(2422~2472)
Modulation	DSSS, OFDM, DBPSK, DQPSK, CCK, 16-QAM, 64-QAM for WLAN GFSK (1Mbps), Π/4 DQPSK (2Mbps) and 8DPSK (3Mbps) for Bluetooth
Output Power	WLAN G band: 11b:15dBm +/- 2dBm(11M) 11g:13dBm +/- 2dBm (54M) 11n:HT20 12dBm +/- 2dBm(MCS7) HT40 11dBm +/- 2dBm(MCS7) WLAN A band: 11a:13dBm +/- 2dBm(54M) 11n HT20:12dBm +/- 2dBm(MCS7) 11n HT40:11dBm +/- 2dBm(MCS7) 11ac VHT_20:11dBm +/- 2dBm(MCS8) 11ac VHT_40:10dBm +/- 2dBm(MCS9) 11ac VHT_80: 8dBm +/- 2dBm(MCS9) Bluetooth: Class 2

Inspired by wireless

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewaye.

is a knowledge property to Azurewave.

• Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

Receive Sensitivity	WLAN G band: 11b:-86dBm (11M) 11g:-71dBm (54M) 11n:HT20 -70dBm (MCS7) HT40 -68dBm (MCS7) WLAN A band: 11a: -71dBm (54M) 11n HT20 -70dBm (MCS7) 11n HT40 -68dBm(MCS7) 11ac VHT_20: -66dBm(MCS8) 11ac VHT_40: -64dBm(MCS9) Bluetooth: TBD
Medium Access Protocol	CSMA/CA with ACK
Data Rates	WLAN 802.11b: 1, 2, 5.5, 11Mbps 802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n: up to 150Mbps-single 802.11n: up to 300Mbps-2x2 MIMO 802.11ac:up to 192.6Mbps (20MHz channel) 802.11ac:up to 400Mbps (40MHz channel) 802.11ac:up to 866.7Mbps (80MHz channel) Bluetooth Bluetooth 2.1+EDR data rates of 1,2, and 3Mbps
Power Consumption	Please refer to Power Consumption report.
Operating Range	Open Space: ~300m; Indoor: ~100m for WLAN Minimum 10 m indoor for Bluetooth The transmission speed may vary according to the environment)
Security	 WAPI WEP 64-bit and 128-bit encryption with H/W TKIP processing WPA/WPA2 (Wi-Fi Protected Access) AES-CCMP hardware implementation as part of 802.11i security standard
Operating System Compatibility	Linux, More information please contact Azurewave FAE.
Co-Existence	Bluetooth and cell phone(GSM/DCS/WCDMA/UMTS/3G) co-existence

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewaye.

is a knowledge property to Azurewave.

• Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

2. Electrical Characteristic

2-1. Absolute Maximum Ratings

Symbol	Parameter	Condition	Min	Тур	Max	Units
VBAT_IN	LDO VBAT input			3.3	5.0	V
3V3_USB_IN	LDO USB 3.33V input			3.3	4.0	V
3V3_RF_IN	LDO RF 3.3V input			3.3	4.0	У
3V3_IN	LDO 3.3V input			3.3	4.0	V
VBUCK11_OUT	Internal power supply			1.1	1.26	V
VBUCK18_OUT	Internal power supply			1.8	2.2	V
VIO	Host I/O power supply			3.3 2.5 1.8	4.0 3.0 2.2	V
VIO_SD	SDIO power supply			3.3 1.8	4.0 2.2	V
VIO_RF	RF I/O power supply			3.3	4.0	V
	1			1.8	2.2	

2-2.Recommanded Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
VBUCK11_OUT	Internal power supply	Y		1.1	1.21	V
VBUCK18_OUT	Internal power supply		1.62	1.8	1.98	V
	1.8V/2.5V/3.3V digital I/O		2.97	3.3	3.63	
VIO	power supply		2.25	2.5	2.75	V
	powordappy		1.62	1.8	1.98	1
VIO_SD	1.8V/3.3V digital I/O SDIO		2.97	3.3	3.63	V
VIO_0B	power supply		1.62	1.8	1.98	
VIO_RF	1.8V/3.3V I/O power supply		2.97	3.3	3.63	V
V10 <u>2</u> 10	1.0 v/3.5 v 1/O power suppry		1.62	1.8	1.98	_
AVDD33	3.3V Analog power supply		2.97	3.3	3.63	V
VBAT_IN	LDO VBAT input		2.7	3.3	5.0	V
3V3_USB_IN	LDO USB 3.3V input		2.97	3.3	3.63	V
3V3_RF_IN	LDO RF 3.3V input		2.97	3.3	3.63	V
3V3_IN	LDO 3.3V input		2.97	3.3	3.63	V

Inspired by wireless

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

2-3. Clock Specifications

2-3-1 External Sleep Clock Timing

External Sleep Clock is necessary for two reasons:

1. Auto frequency Detection.

This is where the internal logic will bin the Ref clock source to figure out what is the reference clock frequency is. This is done so no strapping is needed for telling 8897 what the ref clock input is.

2. Allow low current modes for BT to enter sleep modes such as sniff modes.

The AW-CH397 external sleep clock pin is powered from the 3.3V voltage supply.

Symbol	Parameter	Min	Тур	Max	Units
CLK	Clock Frequency Range	32 or 32.768 -50ppm	32 or 32.768	32 or 32.768 +50ppm	KHz
T _{HIGH}	Clock high time	40			ns
T _{LOW}	Clock low time	40	(Y	ns
T _{RISE}	Clock rise time			5	ns
T _{FALL}	Clock fall time			5	ns

2-4. Reset Configuration

The AW-CH397 is reset to its default operating state under the following conditions:

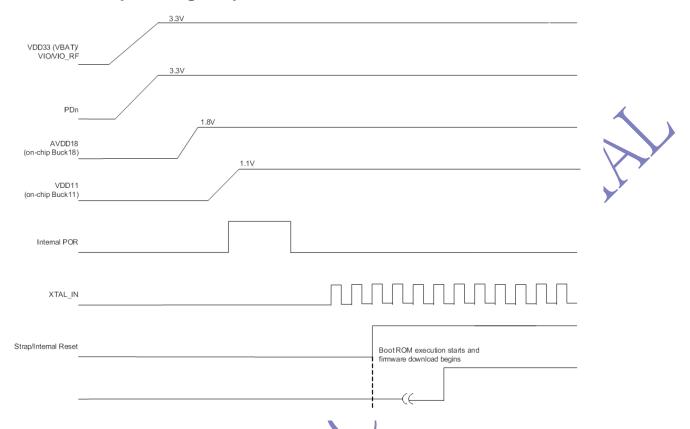
- Power-on reset (POR)
- Software/Firmware reset
- External pin reset (RESETn)

2-4-1. Internal Reset

The AW-CH397 device is reset, and the internal CPU begins the boot sequence when any of the following internal reset events occur:

- Device receives power and VDDL supplies rise (triggers internal POR circuit)
- External pin (PDn) assertion will generate POR

2-4-2. External Reset


The AW-CH397 is reset when PDn pin is asserted low and the internal CPU begins the boot sequence when the PDn pin transitions from low to high.

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

2-5. Power up Timing Sequence

3. Host Interfaces

3-1. SDIO Interface

The AW-CH397 supports a SDIO device interface that conforms to the industry standard SDIO Full-Speed card specification and allows a host controller using the SDIO bus protocol to access the Wireless module device.

The AW-CH397 acts as the device on the SDIO bus. The host unit can access registers of the SDIO interface directly and can access shared memory in the device through the use of BARs and a DMA engine.

The SDIO device interface main features include:

Supports SDIO 3.0 Standard

On-chip memory used for CIS

Supports SPI, 1-bit SDIO, and 4-bit SDIO transfer modes

Special interrupt register for information exchange

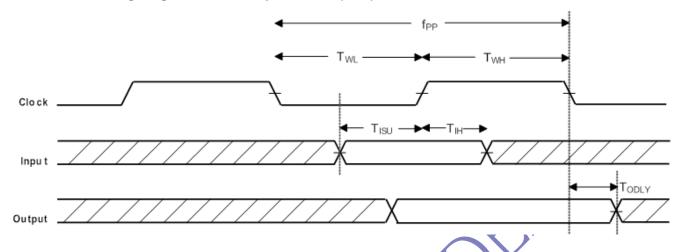
Allows card to interrupt host

Inspired by wireless

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-1-1. SDIO Interface Signal Description

	Signal	Type	
Pin Name	Name		Description
SD_CLK	CLK	I/O	SDIO 1-bit mode: Clock
			SDIO SPI mode: Clock
SD_CMD	CMD	I/O	SDIO 1-bit mode: Command line
			SDIO SPI mode: Data input
SD_DAT[3]	DAT3	I/O	SDIO 4-bit mode: Data line bit [3]
			SDIO 1-bit mode: Not used
			SDIO SPI mode: Chip select (active low)
SD_DAT[2]	DAT2	I/O	SDIO 4-bit mode: Data line bit [2] or Read Wait (optional)
			SDIO 1-bit mode: Read Wait (optional)
			SDIO SPII mode: Reserved
SD_DAT[1]	DAT1	I/O	SDIO 4-bit mode: Data line bit [1]
			SDIO 1-bit mode: Interrupt
			SDIO SPI mode: Interrupt
SD_DAT[0]	DAT0	I/O	SDIO 4-bit mode: Data line bit [0]
			SDIO 1-bit mode: Data line
			SDIO SPI mode: Data output



[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-1-2. Default Speed, High Speed Modes (3.3V)

SDIO Protocol Timing Diagram - Default Speed Mode (3.3V)

SDIO Protocol Timing Diagram - HighSpeed Mode (3.3V)

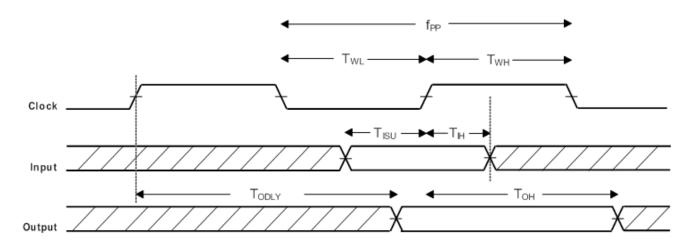
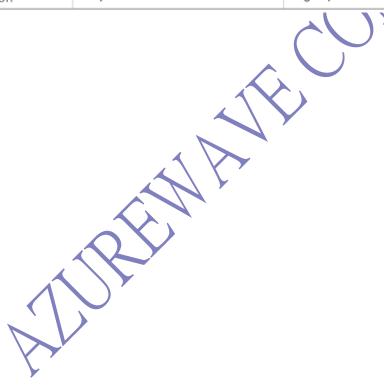


Table shows SDIO Timing Data—Default Speed, High Speed Modes (3.3V)

NOTE: Over full range of values specified in the Recommended Operating Conditions unless otherwise specified.


Inspired by wireless

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

Sy mbol	Par ameter	Con dit io n	Min	Тур	Max	Un its
f _{PP}	Clock Frequency	Default Speed	0		25	MHz
		High Speed	0		50	MHz
T _{WL}	Clock Low Time	Default Speed	10			ns
		High Speed	7			ns
T _{WH}	Clock High Time	Default Speed	10			ns
		High Speed	7			ns
T _{ISU}	Input Setup Time	Default Speed	5			ns
		High Speed	6			ns
T _{IH}	Input Hold Time	Default Speed	5			ns
		High Speed	2			ns
T _{ODLY}	Output Delay Time	Default Speed			14	ns
	CL ≤ 40 pF (1 card)	High Speed		-1	4	ns
T _{OH}	Output Hold Time	High Speed	2.5			ns

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-2. PCI Express Interface

The PCI Express host interface pins are powered from the AVdd18 voltage supply.

3-2-1 Differential Tx Output Electricals

Sy mbol	Paramete r	Min	Тур	Max	Unit s
UI	Unit interval Each UI is 400 ps ±300 PPM. UI does not account for SSC dictated variations.	399.98	400	400.12	ps
V_{Tx_DIFFpp}	Differential peak-to-peak output voltage V _{Tx_DIFFpp} = 2* V _{TX-D+} - V _{TX-D} -	0.800		1.2	V
V _{Tx_DE_RATIO}	De-emphasized differential output voltage (ratio)	-3.0	-3.5	-4.0	db
T _{Rx_EYE}	Minimum Tx eye wid th	0.75			UI
T _{Rx_EYE_MEDIAN_} MAX_JIT	Maximum time between jitter median and maximum deviation from median			0.125	UI
T _{Tx_RISE} , T _{Tx_FALL}	D+/D- Tx output rise/fall time	0.125			UI
V _{Tx_CM_DC_} ACTIV E_IDLE_DELTA	Absolute delta of DC common mode voltage during L0 and electrical idle	0-	-	100	mV
V _{Tx_CM_DC_LINE_} DELTA	Absolute delta of DC common mode voltage between D+ and D-	0-	-	25	mV
V _{Tx_IDLE_D IFF p}	Electrical idle differential peak output voltage	0		20	mV
V _{Tx_RCV_DETECT}	Voltage change allowed during receiver detection			600	mV
V _{Tx_DC_CM}	TxDC common mode voltage			3.6	٧
I _{Tx_SHORT}	Tx short circuit current limit			90	mA
T _{Tx_IDLE_MIN}	Minimum time spent in electrical idle	50			UI
T _{Tx_IDLE_SET_TO_} IDLE	Maximum time to transition to a valid electrical idle after sending an electrical idle ordered set			20	UI
T _{Tx_IDLE_} TO_DIFF_ DATA	Maximum time to transition to valid Tx specifications after leaving an electrical idle condition			20	UI
RL _{Tx_DIFF}	Differential return loss	10			dB
RL _{Tx_CM}	Common mode return loss	6			dB
C _{Tx}	AC coupling capacitor	75		200	nF
T _{Crosstalk}	Crosstalk random timeout	0		1	ms

Inspired by wireless

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-2-2 Differential Rx Output Electricals

Symbol	Paramet er	Min	Тур	Max	Unit s
UI	Unit interval Each UI is 400 ps ±300 ppm. UI does not account for SSC dictated variations.	399.98	400	400.12	ps
V_{Rx_DIFFpp}	Differential peak-to-peak voltage V _{Rx_DIFFpp} = 2* V _{RX-D+} - V _{RX-D-}	0.175		1.2	V
T _{Rx_EYE}	Minimum receiver eye width	0.4			UI
T _{RX_EYE_MEDIAN_MAX_} JIT	Maximum time between jitter median and maximum deviation from median			0.3	UI
V _{Rx_CM_ACp}	AC peak common mode input voltage			150	mV
RL _{Rx_DIFF}	Differential return loss	10			dB
RL _{Rx_CM}	Common mode return loss	6			dB
Z _{Rx_DIFF_DC}	DC differential input impedance	80	100	120	Ω
Z _{Rx_DC}	DC input impedance	40	50	60	Ω
Z _{Rx_HIGH_IMP_DC_POS}	Powered down DC input impedance positive	50			k
Z _{Rx_HIGH_IMP_DC_NEG}	Powered down DC input impedance negative	1			kΩ
V _{Rx_IDLE_DET_}	Electrical idle detect threshold	65		175	mV
T _{Rx_IDLE_DET_} DIFF_ENTERTIME	Unexpected electrical idle enter detect threshold integration time			10	ms
L _{Rx_SKEW}	Total skew		-2	0	ns

3-3. USB Interface

The USB device interface is compliant with the Universal Serial Bus Specification, Revision 2.0, April 27, 2000. A USB host uses the USB cable bus and the USB 2.0 device interface to communicate with the chip.

The main features of the USB device interface include:

High/full speed operation (480/12 Mbps)

Suspend/host resume/device resume (remote wake-up)

Built-in DMA engine that reduces interrupt loads on the embedded processor and reduces the system bus bandwidth requirement for serving the USB device operation

The USB 2.0 device interface is designed with 3.3V signal level pads.

Inspired by wireless

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewaye.

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-3-1. USB 2.0 Device Interface Description

Table shows the signal mapping between the AW-CH397 and the USB Specification, Revision 2.0.

Pin Name	USB 2.0 Specification Pin Name	Description
B11 VBAT_USB_IN	VBUS	USB Bus Power Supply On-board regulator regulates voltage from VBUS level to voltage levels used by USB PHY.
-	GND	USB Bus Ground Common ground on SoC device.
D11 USB_DP	D+	USB Bus Data Plus One of the differential data pair.
C11 USB_DM	D-	USB Bus Data Minus One of the differential data pair.

3-3-2. USB 2.0 Device Functional Description

The device controller uses internal Scatter/Gather DMA engine to transfer the transmit packet from internal SRAM to USB and the receive packet from USB to internal SRAM. The Device IN Endpoint DMA (DIEPDMAn) and Device OUT Endpoint DMA (DOEPDMAn) registers are used by the DMA engine to access the base descriptor. The application is interrupted after the programmed transfer size extracted from the descriptors is transmitted or received. By using registers, interrupts, and special data structures, the device controller can communicate with the device controller driver (application/software) about bus states, host request, and data transfer status. The device controller driver also has all of the routines to respond to the device framework commands issued by a USB host, so it controls the attachment, configuration, operation, and detachment of the device.

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-4. High-Speed UART Interface

The AW-CH397 supports a high-speed Universal Asynchronous Receiver/Transmitter (UART) interface, compliant to the industry standard 16550 specification. High-speed baud rates are supported to provide the physical transport between the device and the host for exchanging Bluetooth data. Table shows the rates supported.

The UART interface features include:

FIFO mode permanently selected for transmit and receive operations

Two pins for transmit and receive operations

Two flow control pins

Interrupt triggers for low-power, high throughput operation

The UART interface operation includes:

Upload boot code to the internal CPU (for debug purposes)

Support diagnostic tests

Support data input/output operations for peripheral devices connected through a standard

UART interface

UART Baud Rates Supported

Baud Rate				
1200	38400	460800	1500000	3000000
2400	57600	500000	1843200	3250000
4800	76800	921600	2000000	3692300
9600	115200	1000000	2100000	4000000
19200	230400	1382400	2764800	

3-4-1. UART Interface Signal Description

Table shows the standard UART signal names on the device.

16550 Standard Pin Name	Description
SIN	Serial data input from modem, data set, or peripheral device
SOUT	Serial data output from modem, data set, or peripheral device
	'
RTS	Request To Send output to modem, data set, or peripheral device (active low)
CTS	Clear To Send input from modem, data set, or peripheral device (active low)
	Standard Pin Name SIN SOUT

Inspired by wireless

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewaye.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-4-2. UART Interface Functional Description

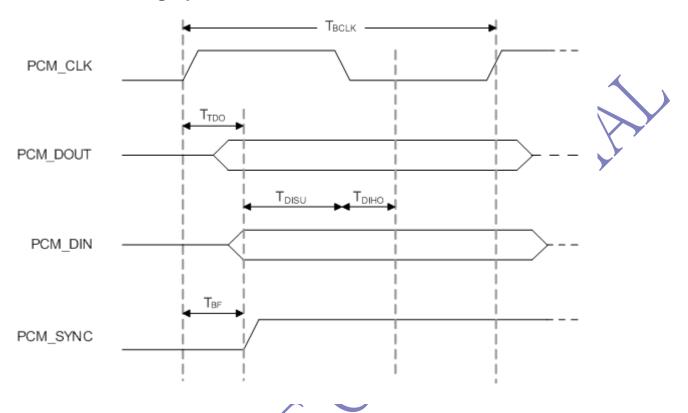
3-4-2-1. Booting from UART

When booting from the UART, the AW-CH397 device has the following requirements:

System Requirement	Description
Number of data bits	8 bits
Stop bits	1 bit
Parity	No parity
Baud Rate	115200

3-4-2-2. UART as Test Port

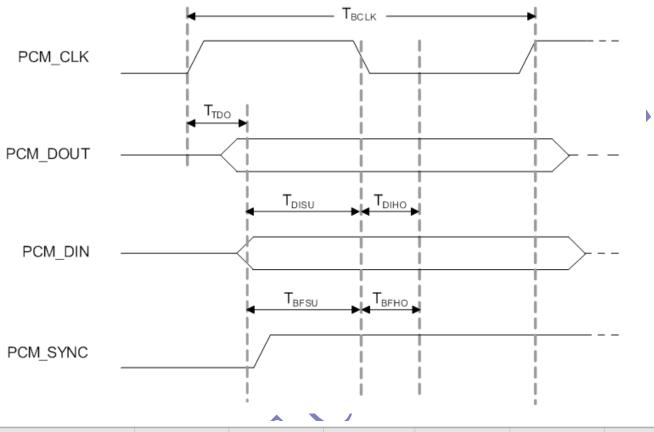
Test diagnostic programs may be uploaded to the CPU through the UART interface. During execution, the diagnostic program transmits performance and status information through the UART by performing a write to the PBU address space designated to the UART.



- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-5. PCM Interface

3-5-1. PCM Timing Specification - Master Mode


Sy mbol	Parameter	Con diti on	Min	Тур	Max	Unit s
F _{BCLK}				2/2.048		MHz
Duty Cycle _{BCLK}			0.4	0.5	0.6	
T _{BCLK} rise/fall				3		ns
T _{DO}					15	ns
T _{DIS U}			20			ns
T _{DHO}			15			ns
T _{BF}					15	ns

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

3-5-2. PCM Timing Specification - Slave Mode

Symbol	Parameter	Cond ition	Min	Тур	Max	Unit s
F _{BCLK}				2/2.048		MHz
Duty Cycle _{BCLK}			0.4	0.5	0.6	
T _{BCLK rise/fall}				3		ns
T _{DO}					30	ns
T _{DISU}			15			ns
T _{DIHO}			10			ns
T _{BFSU}			15		-	ns
T _{BFHO}	-		10			ns

Inspired by wireless

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

4. Pin Definition

PIN No.	Name	Description	Type
A1	VBAT_IN	VBAT power supply for LDO input internal	I
A2	GND	Ground	
A3	VBUCK11_IN	1.1V core power supply	I
A4	VBUCK11_OUT	1.1V LDO Voltage Output	0
A5	3V3_USB_IN	3.3V Analog Power Supply for USB	I
A6	SD_CMD	SDIO Command/response (input/output)	I/O
A7	SD_CLK	SDIO Clock input	I
A8	SD_DAT[2]	SDIO Data line Bit[2]	I/O
A9	SD_DAT[3]	SDIO Data line Bit[3]	I/O
A10	SLP_CLK_IN	Sleep Clock Input. Used for WLAN and Bluetooth low-power modes. External sleep clock of 32.768 KHz must be used for auto reference clock calibration and for WLAN/Bluetooth low power operation.	I
B1	GND	Ground	
B2	GND	Ground	
В3	GND	Ground	
B4	VIO_SD	1.8V/3.3V Digital I/O SDIO Power Supply	
B5	GND	Ground	
B6	PCIE_TX_P	PCI Express Transmit Data—Positive	
B7	PCIE_TX_N	PCI Express Transmit Data—Negative	
B8	SD_DAT[0]	SDIO Data line Bit[0]	I/O
B9	SD_DAT[1]	SDIO Data line Bit[1]	I/O
B10	GPIO[3]	GPIO Mode: GPIO[3] (input/output) USB Mode: VBUS_ON (input)	I
C1	VBUCK18_IN	1.8V analog power supply	I
C2	GND	Ground	
C3	GND	Ground	
C4	GND	Ground	
C5	PCIE_RX_P	PCI Express Receive Data—Positive	
C6	PCIE_RCLK_P	PCI Express Differential Clock Input—Positive	
C7	GPIO[13]	 PCIe Mode: PCIe host indication to disable the WLAN function of the device (input) (active low) GPIO Mode: GPIO[13] 	I/O
C8	GPIO[14]	GPIO[14] (input/output)	I/O
C9	GPIO[2]/LTE_SIN	GPIO Mode: GPIO[2] (input/output) LTE Mode: UART_LTE_SIN (input)	I
C10	VIO	1.8V/2.5V/3.3V Digital I/O Power Supply	I
D1	VBUCK18_OUT	1.8V LDO Voltage Output	0

Inspired by wireless

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewaye.

is a knowledge property to Azurewave.

• Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

PIN No.	Name	Description	Туре
D2	PDn	Full Power Down (input) (active low) 0 = full power down mode 1 = normal mode • Connect to power down pin of host or VBAT • External host required to drive this pin high for normal operation Internal pull-up to VBAT_IN with a 51K ohm.	ı
D3	NC	No Connect	
D4	NC	No Connect	
D5	PCIE_RX_N	PCI Express Receive Data—Negative	
D6	PCIE_RCLK_N	PCI Express Differential Clock Input—Negative	
D7	GPIO[22]	1. GPIO Mode: GPIO[22] (input/output) 2. I2S Mode: I2S_LRCLK (input/output) Output if master Input if slave 3. PCM Mode: PCM_SYNC (input/output) Output if master Input if slave	I/O
D8	GPIO[21]	1. GPIO Mode: GPIO[21] (input/output) 2. I2S Mode: I2S_BCLK (input/output) Output if master Input if slave 3. PCM Mode: PCM_CLK (input/output) Output if master Input if slave	I
D9	NC	No Connect	
D10	NC	No Connect	
E1	3V3_IN	3.3V Analog Power Supply	
E2	NC	No Connect	
E3	NC	No Connect	
E4	NC	No Connect	
E5	GPIO[12]	 GPIO Mode: GPIO[12] (input/output) PCIe Mode: PCIE_PERSTn (input) (active low) PCIe host indication to reset the device. 	
E6	PCIE_CLKREQ_N	PCIe clock request (input/output) (active low)	I/O
E7	GPIO[19]	1. GPIO Mode: GPIO[19] (input/output) 2. I2S Mode: I2S_DIN (input) 3. PCM Mode: PCM_DIN (input)	I/O
E8	GPIO[0]	1. GPIO Mode: GPIO[0] (input/output) 2. Oscillator Mode: XOSC_EN/CLK_REQ (output) (active high) 0 = disable external oscillator 1 = enable external oscillator	0
E9	NC	No Connect	
E10	NC	No Connect	
F1	NC	No Connect	
F2	NC	No Connect	
F3	NC	No Connect	
F4	NC	No Connect	

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewaye.

is a knowledge property to Azurewave.

• Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

PIN No.	Name	Description	Туре
F5	GPIO[4]	GPIO Mode: GPIO[4] (input/output) UART Mode: UART_SOUT (output)	0
F6	PCIE_WAKEUP_N	PCIe wake signal (output) (active low)	I/O
F7	GPIO[20]	1. GPIO Mode: GPIO[20] (input/output) 2. I2S Mode: I2S_DOUT (output) 3. PCM Mode: PCM_DOUT (output)	I/O
F8	GPIO[1]/LTE_SOUT	GPIO Mode: GPIO[1] (input/output) LTE Mode: UART_LTE_SOUT (output)	I
F9	SER_CLK	EEPROM Mode: SER_CLK	0
F10	USB_DP	USB Serial Differential Data Positive	I/O
G1	NC	No Connect	
G2	TDI	JTAG test data (input)	I
G3	TDO	JTAG test data (output)	0
G4	GPIO[6]	GPIO Mode: GPIO[6] (input/output) UART Mode: UART_CTSn (input) (active low)	- 1
G5	GPIO[5]	GPIO Mode: GPIO[5] (input/output) UART Mode: UART_SIN (input)	I
G6	GPIO[10]	1. GPIO Mode: GPIO[10] (input/output) 2. EEPROM Mode: SER_WB 3. I2S Mode: I2S_CCLK (input/output) Output if master Input if slave 4. PCM Mode: PCM_MCLK (optional, output) Output if master Input if slave 5. Optional clock used for some codecs.	I/O
G7	GND	Ground	
G8	GND	Ground	
G9	SER_DAT	EEPROM Mode: SER_DAT	0
G10	USB_DM	USB Serial Differential Data Negative	I/O
H1	NFC_VDDANT	Decoupling of internal supply	
H2	TCK	JTAG test clock (input)	I
H3	GPIO[9]	GPIO Mode: GPIO[9] (input/output) LED Mode: LED_OUT_BT (output)	I
H4	GPIO[11]	GPIO Mode: GPIO[11] (input/output) LED Mode: LED_OUT_NFC (output)	I/O
H5	GPIO[7]	GPIO Mode: GPIO[7] (input/output) UART Mode: UART_RTSn (output) (active low)	0
H6	GND	Ground	
H7	GND	Ground	
H8	GND	Ground	
H9	SER_CSN	EEPROM Mode: SER_CSn	I/O
H10	3V3_RF_IN	3.3V Analog Power Supply for RF	I

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewaye.

is a knowledge property to Azurewave.

• Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

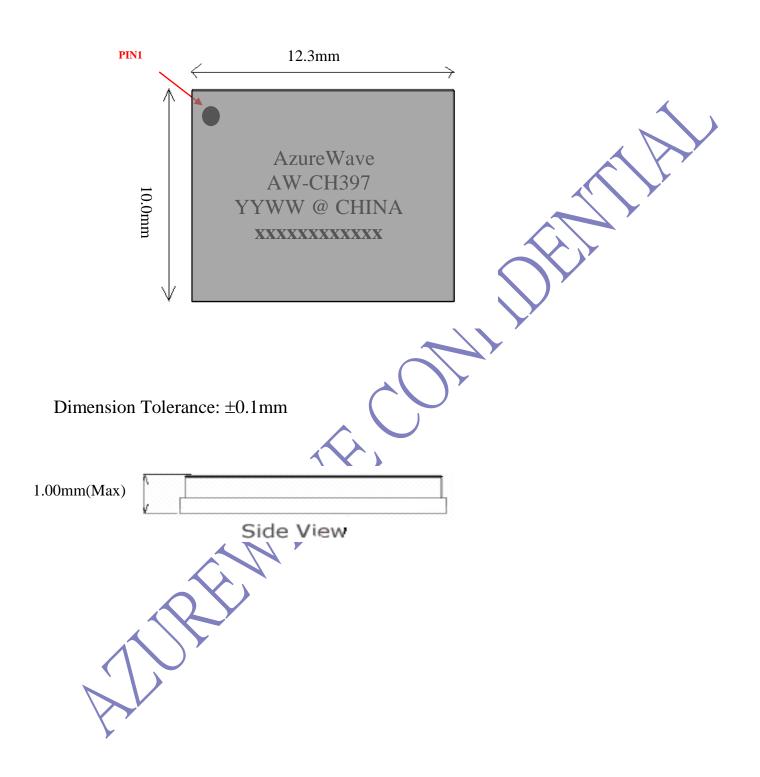
PIN No.	Name	Description	Туре
J1	VIO_RF	1.8V/3.3V Analog I/O RF Power Supply	- 1
J2	TMS	JTAG controller select (input)	1
J3	GPIO[8]	1. GPIO Mode: GPIO[8] (input/output) 2. LED Mode: LED_OUT_WLAN (output)	
J4	GND	Ground	
J5	GND	Ground	
J6	GND	Ground	
J7	GND	Ground	
J8	GND	Ground	
J9	GND	Ground	
J10	GND	Ground	
K1	NC	No Connect	
K2	RF_CNTL1_P	RF Control 1—RF Control Output High (output)	
K3	RF_CNTL0_N	RF Control 0—RF Control Output Low (output)	
K4	GND	Ground	
K5	CONFIG_HOST[1]	Configuration Pins. Firmware Boot Options No hardware impact. Software reads and boots accordingly.	ı
K6	CONFIG_HOST[0]	Configuration Pins. Firmware Boot Options No hardware impact. Software reads and boots accordingly.	I
K7	CONFIG_HOST[2]	Configuration Pins. Firmware Boot Options No hardware impact. Software reads and boots accordingly.	I
K8	CONFIG_HOST[3]	Configuration Pins. Firmware Boot Options No hardware impact. Software reads and boots accordingly.	I
K9	GND	Ground	
K10	ANT_2G5G_A	Antenna-A IO port for WLAN (50 ohms, 2.4GHz/5GHz band)	I/O
L1	GND	Ground	
L2	GND	Ground	
L3	GND	Ground	
L4	GND	Ground	
L5	GND	Ground	
L6	GND	Ground	
L7	GND	Ground	
L8	GND	Ground	
L9	GND	Ground	
L10	GND	Ground	
M1	GND	Ground	
M2	GND	Ground	

[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewaye.

is a knowledge property to Azurewave.

• Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

PIN No.	Name	Description	Туре
M3	GND	Ground	
M4	GND	Ground	
M5	GND	Ground	
M6	GND	Ground	
M7	GND	Ground	
M8	GND	Ground	
M9	GND	Ground	
M10	GND	Ground	
N1	GND	Ground	
N2	GND	Ground	
N3	GND	Ground	
N4	GND	Ground	
N5	GND	Ground	
N6	ANT_2G5G_B_BT	Antenna-B IO port for WLAN/BT (50 ohms, 2.4GHz/5GHz band)	I/O
N7	GND	Ground	
N8	GND	Ground	
N9	GND	Ground	
N10	GND	Ground	



[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

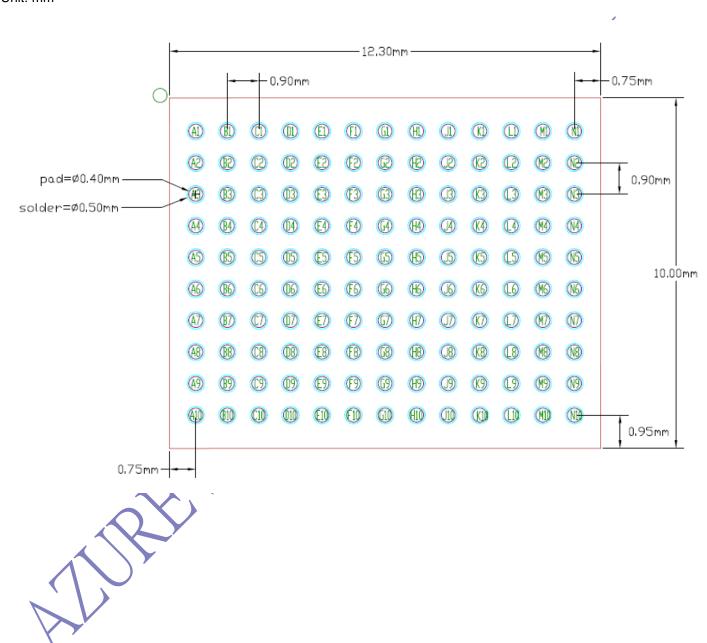
[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

5. Mechanical Information

Inspired by wireless

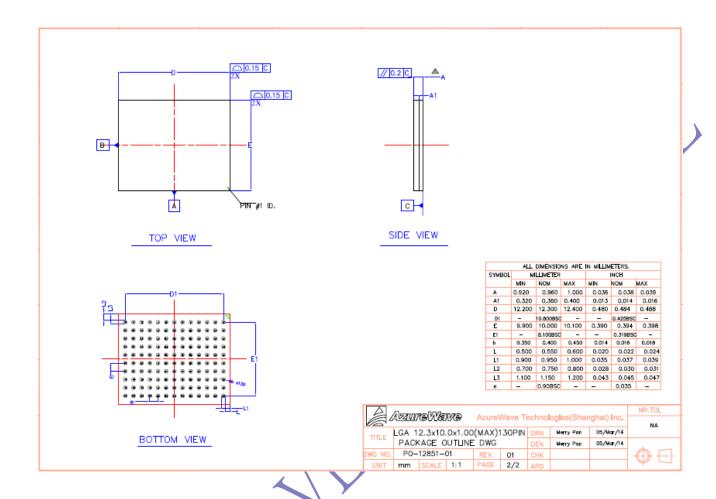
[•] Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.

Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.



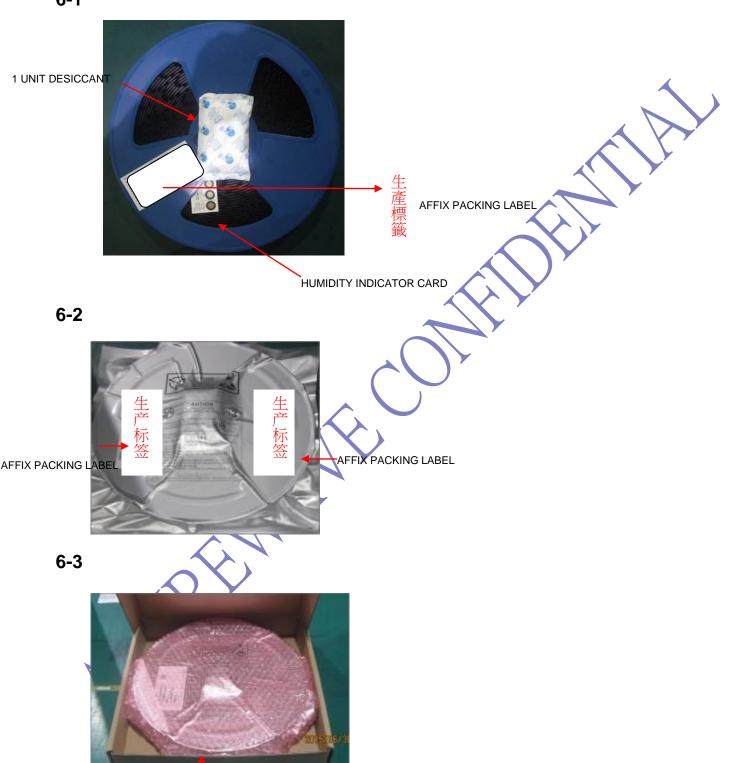
5-1. Package Outline Drawing

5-2. MODULE FOOTPRINT


AW-CH397 TOP VIEW PCB LAYOUT FOOTPRINT

Unit: mm

[•] Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.



- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

6. Shipping Information

6-1

Inspired by wireless

PINK BUBBLE WRAP

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.

6-4

AFFIX PACKING LABEL

6-51 Carton= 5 Boxes

6-6

Note: 1 tape reel = 1 box = 2,000 pcs

1 carton = 5 boxes = 5 * 2,000pcs=10,000pcs

Inspired by wireless

- Warning!! This is a message from Azurewave and the information you are viewing now is strictly confidential and is a knowledge property to Azurewave.
- Unauthorized use of this document is prohibited and Azurewave retains the right for legal actions against any loss suffered or expenditure due to the misuse of any information form this document.