

AW-XM632-SURX

IEEE 802.11 a/b/g/n/ac/ax Wi-Fi 6E

+ Bluetooth 5.3 Combo Module

Datasheet

Rev.A

DF

(For Standard)

1

Features

Wi-Fi

- 802.11a/b/g/n/ac/ax compliant, tri-band capable (2.4/5/6 GHz).
- 5/6 GHz: 20/40/80-MHz channels, 1024-QAM, 1×1 providing up to 600 Mbps PHY data rate.
- 2.4 GHz: 20/40[1]-MHz channels, 1024-QAM, 1×1 providing up to 287 Mbps PHY date rate.
- 802.11ax STA mode and Soft AP mode with 11ax scheduled access.
- Supports 802.11d, h, k, r, v, w, ai.
- On-chip power amplifiers and low-noise amplifiers.
- Supports multipoint external coexistence interface to optimize bandwidth utilization with other co-located wireless technologies such as LTE.
- Fast VSDB (Virtual Simultaneous Dual Band).
- Worldwide regulatory support: Global products supported with worldwide homologated design.
- Integrated Arm® Cortex® R4 processor with tightly coupled memory for complete WLAN subsystem functionality. This architecture offloads the host processor completely from WLAN functionality.
- Transmission and reception of HE-SU and HE-ER-SU PPDU.
- Reception of HE-MU PPDU-OFDMA/MU-MIMO Frame.
- Transmission of HE-TB PPDU (Uplink MU OFDMA).

Bluetooth

FORM NO.: FR2-015 A

- Bluetooth 5.3 (BDR + EDR + BLE).
- All Bluetooth 5.0/5.1/5.2 optional features supported including LE-Audio.
- Dedicated Bluetooth® RF path for best Wi-Fi
 + Bluetooth coexistence performance.

- Bluetooth Class 1 or Class 2 transmitter operation.
- Supports extended synchronous connections (eSCO), for enhanced voice quality by allowing for retransmission of dropped packets.
- Adaptive frequency hopping (AFH) for reducing radio frequency interference.
- Interface support, host controller interface (HCI) using a high-speed UART interface and PCM/I2S for audio data.
- Supports multiple simultaneous Advanced Audio Distribution Profiles (A2DP) for stereo sound.
- On-chip memory includes 512 KB SRAM and 2 MB ROM.

Interface

- SDIO 2.0/3.0 for WLAN.
- HCI-UART, PCM/I2S for Bluetooth.

Coexistence

- Built-in advanced algorithms for Wi-Fi + Bluetooth coexistence.
- 2-wire SECI for external 3rd party Bluetooth®/GPS/LTE radios.

General

- Fully integrated programmable dynamic Power Management Unit.
- Supports 1.8 V VDDIO.
- Supports 1340 Bytes of OTP shared between Bluetooth and WLAN for storing board parameters.

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

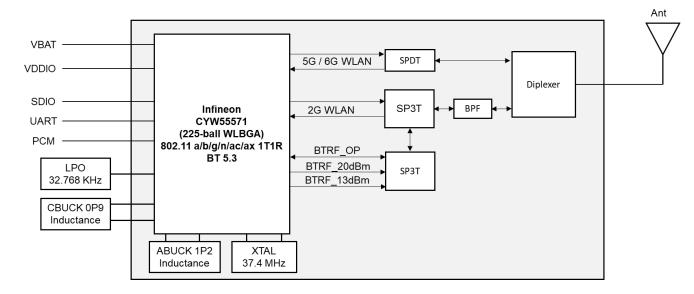
Revision History

Document NO: R2-2661-DST-02

Version	Revision Date	DCN NO.		Description	Initials	Approved
Α	2024/08/21	DCN032165	•	Initial Version	YuFu Chen	N.C. Chen

Table of Contents

Features	2
Revision History	3
Table of Contents	4
1. Introduction	5
1.1 Product Overview	5
1.2 Block Diagram	
1.3 Specifications Table	6
1.3.1 General	6
1.3.2 WLAN	6
1.3.3 Bluetooth	
1.3.4 Operating Conditions	
1.4 Frequency references	
1.4.1 External 32.768 kHz sleep clock specifications	
2. Pin Definition	
2.1 Pin Map	
2.2 Pin Table	
3. Electrical Characteristics	
3.1 Absolute Maximum Ratings	
3.2 Recommended Operating Conditions	
3.3 Digital IO Pin DC Characteristics	
3.4 Host Interface	
3.4.1 PCM Interface Timing	
3.4.2 UART Interface	
3.4.3 SDIO Interface	
3.5 Power up Timing Sequence	
3.5.1 Description of Control Signals	
3.5.2 Control Signal Timing Diagrams	
3.6 Power Consumption [*]	
3.6.1 WLAN	
3.6.2 Bluetooth	
4. Mechanical Information	
4.1 Mechanical Drawing	
5. Packaging Information	.34



1. Introduction

1.1 Product Overview

The AW-XM632-SURX provides the highest level of integration for Commercial and Consumer IoT wireless systems with integrated tri-band 1x1 IEEE 802.11ax WLAN MAC/baseband/radio, Bluetooth 5.3 MAC/baseband/radio, and integrated Power Management Unit. WLAN and Bluetooth radios also include on-chip power amplifiers and low-noise amplifiers to further reduce the need for external components.

WLAN interfaces to host processor through a SDIO 3.0 interface while Bluetooth host interface is provided through high-speed 4-wire UART interface. Additionally, the Bluetooth section supports PCM and I2S interfaces for audio applications. AW-XM632-SURX is qualified to operate across Industrial (-40°C to +85°C) temperature range.

1.2 Block Diagram

AW-XM632-SURX Block Diagram

1.3 Specifications Table

1.3.1 General

Features	Description
Product Description	802.11 a/b/g/n/ac/ax Wi-Fi 6E + Bluetooth 5.3 Combo Module
Major Chipset	Infineon CYW55571 WLBGA
Host Interface	Wi-Fi + BT → SDIO + UART
Dimension 12 mm x 12 mm x 1.8 mm	
Form factor	LGA, 47 pins
Antenna	Tri-band 1x1 ANT : Wi-Fi/Bluetooth → TX/RX
Weight	TBD

1.3.2 WLAN

Features	Description
WLAN Standard	IEEE 802.11 a/b/g/n/ac/ax
WLAN VID/PID	N/A
WLAN SVID/SPID	N/A
Frequency Rage	WLAN: 2.4 / 5 / 6 GHz Band
Modulation	DSSS DBPSK(1Mbps), DQPSK(2Mbps), CCK(11/5.5Mbps) OFDM BPSK(9/6Mbps/MCS0), QPSK(18/12Mbps/MCS1~2), 16-QAM(36/24Mbps/MCS3~4), 64-QAM(72.2/54/48Mbps/MCS5~7), 256-QAM(MCS8~9), 1024-QAM(MCS10~11)
Number of Channels	 2.4GHz USA, Canada and Taiwan – 1 ~ 11 China, Most European Countries – 1 ~ 13 Japan, 1 ~ 13 5GHz USA, EUROPE – 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165 6GHz CH1~CH233

	2.4G				
		Min	Тур	Max	Unit
	11b (11Mbps) @EVM<8%	16	18	20	dBm
	11g (54Mbps) @EVM≦-25 dB	15	17	19	dBm
	11n (HT20 MCS7) @EVM≦-27 dB	14.5	16.5	18.5	dBm
	11ax (HE20 MCS11) @EVM≦-35 dB	12	14	16	dBm
	5G		-		
		Min	Тур	Max	Unit
	11a (54Mbps) @EVM<-25 dB	14	16	18	dBm
	11n (HT20 MCS7) @EVM≦-27 dB	14	16	18	dBm
	11n (HT40 MCS7) @EVM≦-27 dB	14	16	18	dBm
Output Power ^{1,2} (Board Level Limit) [*]	11ac (VHT20 MCS8) @EVM≦-30 dB	13.5	15.5	17.5	dBm
(,	11ac (VHT40 MCS9) @EVM≦-32 dB	12.5	14.5	16.5	dBm
	11ac (VHT80 MCS9) @EVM≦-32 dB	12	14	16	dBm
	11ax (HE20 MCS11) @EVM≦-35 dB	12.5	14.5	16.5	dBm
	11ax (HE40 MCS11) @EVM≦-35 dB	12	14	16	dBm
	11ax (HE80 MCS11) @EVM≦-35 dB	11.5	13.5	15.5	dBm
	6G				
		Min	Тур	Max	Unit
	11ax (HE20 MCS11) @EVM≦-35 dB	10	12	14	dBm
	11ax (HE40 MCS11) @EVM≦-35 dB	9	11	13	dBm
	11ax (HE80 MCS11) @EVM≦-35 dB	8	10	12	dBm

¹ Unless otherwise stated, limit values apply for an ambient temperature of +25 °C.

FORM NO.: FR2-015_A

7 Responsible Department : WBU

Expiry Date: Forever

 $^{^2}$ Tx power variation ±3.0 dB for process, voltage and temperature variation across –40°C to +85°C.

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

	2.4G						
		Min	Тур	Max	Unit		
	11b (11Mbps)		88	85	dBm		
	11g (54Mbps)		76	73	dBm		
	11n (HT20 MCS7)		74	71	dBm		
	11ax (HE20 MCS11)		63	60	dBm		
			00	00	dBill		
	5G						
		Min	Тур	Max	Unit		
	11a (54Mbps)		74	71	dBm		
	11n (HT20 MCS7)		72	69	dBm		
	11n (HT40 MCS7)		69	66	dBm		
Receiver Sensitivity**	11ac (VHT20 MCS8)		67	64	dBm		
Receiver Sensitivity	11ac (VHT40 MCS9)		63	60	dBm		
	11ac (VHT80 MCS9)		60	57	dBm		
	11ax (HE20 MCS11)		60	57	dBm		
	11ax (HE40 MCS11)		56	53	dBm		
	11ax (HE80 MCS11)		55	52	dBm		
	· · · · · · · · · · · · · · · · · · ·						
	6G						
		Min	Тур	Max	Unit		
	11ax (HE20 MCS11)		56	53	dBm		
	11ax (HE40 MCS11)		54	51	dBm		
	11ax (HE80 MCS11)		52	49	dBm		
	802.11b: 1, 2, 5.5, 11Mb						
	802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps						
	802.11n: MCS0~7 HT20/HT40						
Data Rate	802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps						
	802.11ac: MCS0~8 VHT20						
	802.11ac: MCS0~9 VHT						
	802.11ax: MCS10~11 H	E20/HE40/I	HE80				
	• WEP	_					
	WPA/WPA2/WPA3 Enterprise with 192-bit encryption						
Socurity		 WMM, WMM-PS (U-APSD), WMM-SA 					
Security	 WMM, WMM-PS (U 		/MM-SA				
Security	 WMM, WMM-PS (U AES (hardware acc 	elerator),	/MM-SA				
Security	 WMM, WMM-PS (U 	elerator), celerator)	/MM-SA				

* If you have any certification questions about output power please contact FAE directly

** Project is in engineering stage, RF performance is still being verified.

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

8

1.3.3 Bluetooth

Features	Description					
Bluetooth Standard	Bluetooth 5.3					
Bluetooth VID/PID	N/A					
Frequency Rage	2400~2483.5MHz					
Modulation	GFSK (1Mbps), П/4DQPSK (2Mbps) and 8DPSK (3Mbps)					
Output Power*	BDR Low Energy (2MHz)	Min 3 3	Тур 6 6	Max 9 9	Unit dBm dBm	
Receiver Sensitivity**	BDR EDR Low Energy (2MHz)	Min	Typ -90 -86 -92	Max -87 -83 -89	Unit dBm dBm dBm	

* If you have any certification questions about output power please contact FAE directly ** Project is in engineering stage, RF performance is still being verified.

1.3.4 Operating Conditions

Features	Description				
	Operating Conditions				
Voltage	3.3V				
Operating Temperature	-40°C to 85°C				
Operating Humidity	less than 85% R.H.				
Storage Temperature	-40°C to 125°C				
Storage Humidity	less than 60% R.H.				
	ESD Protection				
Human Body Model	TBD				
Changed Device Model	TBD				

1.4 Frequency references

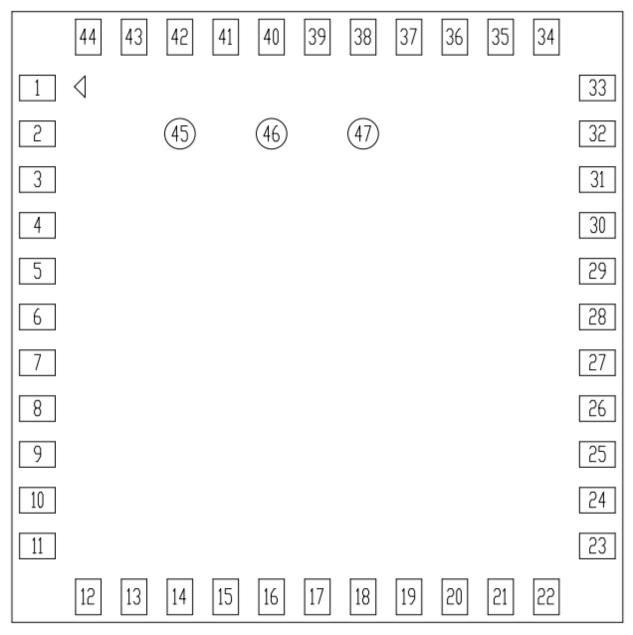
1.4.1 External 32.768 kHz sleep clock specifications

AW-XM632-SURX requires an external low-frequency clock for low-power mode timing. An external 32.768 kHz precision oscillator which meets the requirements listed must be used.

External 32.768 kHz sleep clock specifications

Parameter	LPO clock	Unit
Nominal input frequency	32.768	kHz
Frequency accuracy	±250	ppm
Duty cycle	30 – 70	%
Input signal amplitude	200–1800	mV, p–p
Signal type	Square-wave or sine-wave	-
Input impedance ¹	> 100k	Ω
Clock iittor ² (during initial startus)	< 5	pF
Clock jitter ² (during initial startup)	< 10,000	ppm

Notes:


1. When power is applied or switched off.

 The LPO_IN input receiver has ac-coupled capacitance on the input with the feedback resistor to maintain the common mode around VDDIO/2 and power supply noise should be maintained less than 100mV to avoid any false glitches before the time constant (ac- coupled capacitance * feedback resistor, i.e., 100 μs) settles down.

2. Pin Definition

2.1 Pin Map

AW-XM632-SURX Pin Map (Top View)

2.2 Pin Table

Pin No	Definition	Basic Description	Voltage	Туре
1	GND	Ground.	-	GND
2	ANT	WLAN/BT RF ANT.		RF
3	GND	Ground.	-	GND
4	NC	Floating	-	-
5	GND	Ground.	-	GND
6	BT_DEV_WAKE	Bluetooth DEVICE WAKE.	VDDIO	I/O
7	BT_HOST_WAKE	Bluetooth HOST WAKE.	-	I/O
8	NC	Floating	-	-
9	VBAT	3.3V power pin.	3.3V	PWR
10	NC		-	-
11	NC		-	-
12	WL_REG_ON	Used by the PMU to power up or power down the internal AW-XM632-SURX regulators used by the WLAN section. When deasserted, this pin holds the WLAN section in reset. This pin has an internal 50 K Ω pull-down resistor that is auto enabled/disabled by programming.	VDDIO	I
13	WL_HOST_WAKE	WLAN HOST_WAKE.	VDDIO	I/O
14	SDIO_DATA_2	SDIO data line 2	-	I/O
15	SDIO_DATA_3	SDIO data line 3	-	I/O
16	SDIO_DATA_CMD	SDIO command line	-	I/O
17	SDIO_DATA_CLK	SDIO Clock Input	-	I
18	SDIO_DATA_0	SDIO data line 0	-	I/O
19	SDIO_DATA_1	SDIO data line 1	-	I/O
20	GND	Ground.	-	GND
21	CSR_VLX	CSR Power Stage Output to Inductor.	0.9V	0
22	VDDIO	1.8 V IO Supply for WLAN GPIOs.	1.8V	PWR
23	CBUCK_0P9	Internal Buck 0.9V voltage generation pin.	0.9V	I

FORM NO.: FR2-015_A

12 Responsible Department : WBU

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

		echnologies, mc.		
24	LPO_IN	External Sleep Clock Input (32.768 kHz)	-	Ι
25	BT_PCM_OUT	PCM data output.	VDDIO	0
26	BT_PCM_CLK	PCM clock	VDDIO	I/O
27	BT_PCM_IN	PCM data input.	VDDIO	I
28	BT_PCM_SYNC	PCM sync signal	VDDIO	I/O
29	NC	Floating	-	-
30	NC	Floating	-	-
31	GND	Ground.	-	GND
32	NC	Floating	-	-
33	GND	Ground.	-	GND
34	BT_REG_ON	Used by the PMU to power up or power down the internal regulators used by the Bluetooth® section. When deasserted, this pin holds the Bluetooth section in reset. This pin has an internal 50 k Ω pull-down resistor that is auto enabled/disabled by programming.	VDDIO	I
35	GPIO_2	WLAN General Purpose I/O	VDDIO	I/O
36	GND	Ground.	-	GND
37	WL_DEV_WAKE	WL_DEV_WAKE	VDDIO	I/O
38	GPIO_3	WLAN General Purpose I/O	VDDIO	I/O
39	GPIO_4	WLAN General Purpose I/O	VDDIO	I/O
40	GPIO_5	WLAN General Purpose I/O	VDDIO	I/O
41	BT_UART_RTS_N	UART request-to-send. Active-low request-to-send signal for the HCI UART interface. BT LED control pin.	VDDIO	0
42	BT_UART_TXD	UART Serial Output. Serial data output for the HCI UART interface.	VDDIO	0
43	BT_UART_RXD	UART serial input. Serial data input for the HCI UART interface.	VDDIO	I
44	BT_UART_CTS_N	UART clear-to-send. Active-low clear-to-send signal for the HCI UART interface.	VDDIO	I
45	BT_GPIO_2	Bluetooth General Purpose I/O	VDDIO	I/O
46	NC	Floating	-	-
47	NC	Floating	-	-

3. Electrical Characteristics

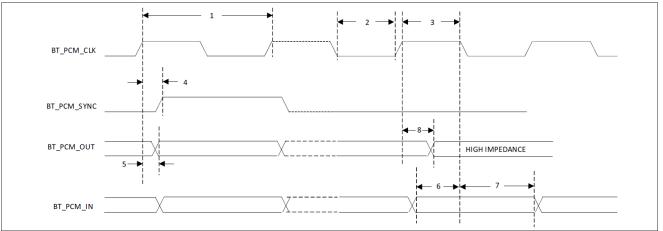
3.1 Absolute Maximum Ratings

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VBAT	DC supply for the VBAT and PA driver supply	-0.5	-	6.0	V
VDDIO	DC supply voltage for digital I/O	-0.5	-	2.2	V
Tj	Maximum junction temperature	-	-	125	°C

3.2 Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VBAT	Power supply for Internal Regulator	3.13	3.3	3.47	V
VDDIO	DC supply voltage for digital I/O	1.71	1.8	1.89	V

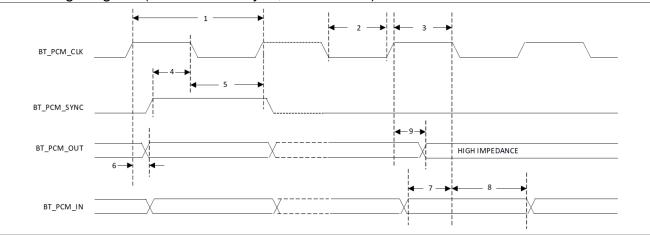
3.3 Digital IO Pin DC Characteristics


Symbol	Parameter	Minimum	Typical	Maximum	Unit				
Digital I/O pins, VDDIO=1.8V									
Vін	Input high voltage	0.65 × VDDIO	-	-	V				
VIL	Input low voltage	-	-	0.35 × VDDIO	V				
Vон	Output high voltage	VDDIO – 0.40	-	-	V				
Vol	Output Low Voltage	-	-	0.45	V				
WL_REG_	WL_REG_ON & BT_REG_ON Pins								
-	Input high voltage	1.2	-	VBAT	-				
-	Input low voltage	-	-	0.3	-				

3.4 Host Interface

3.4.1 PCM Interface Timing

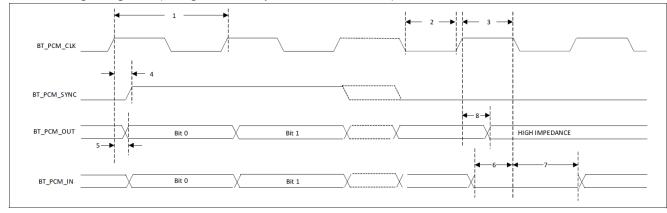
PCM Timing Diagram (Short Frame Sync, Master Mode)



PCM Interface Timing Specifications (Short Frame Sync, Master Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	_	12	MHz
2	PCM bit clock LOW	41	_	_	ns
3	PCM bit clock HIGH	41	-	_	ns
4	PCM_SYNC delay	0	-	25	ns
5	PCM_OUT delay	0	—	25	ns
6	PCM_IN setup	8	_	_	ns
7	PCM_IN hold	8	_	_	ns
8	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0	_	25	ns

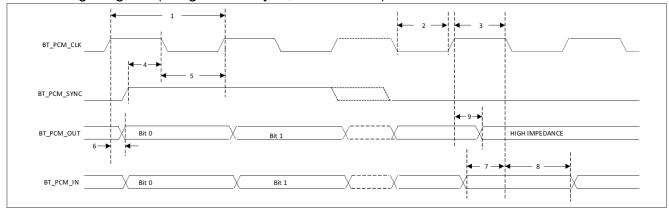
PCM Timing Diagram (Short Frame Sync, Slave Mode)



PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	-	12	MHz
2	PCM bit clock LOW	41	-	-	ns
3	PCM bit clock HIGH	41	_	_	ns
4	PCM_SYNC setup	8	_	_	ns
5	PCM_SYNC hold	8	-	-	ns
6	PCM_OUT delay	0	_	25	ns
7	PCM_IN setup	8	_	_	ns
8	PCM_IN hold	8	_	_	ns
9	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0		25	ns

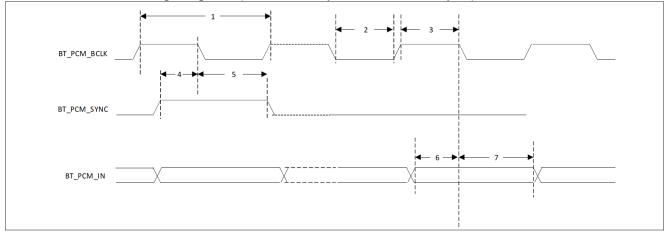
PCM Timing Diagram (Long Frame Sync, Master Mode)



PCM Interface Timing Specifications (Long Frame Sync, Master Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	_	12	MHz
2	PCM bit clock LOW	41	_	-	ns
3	PCM bit clock HIGH	41	_	_	ns
4	PCM_SYNC delay	0	_	25	ns
5	PCM_OUT delay	0	_	25	ns
6	PCM_IN setup	8	_	-	ns
7	PCM_IN hold	8	_	-	ns
8	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0	_	25	ns

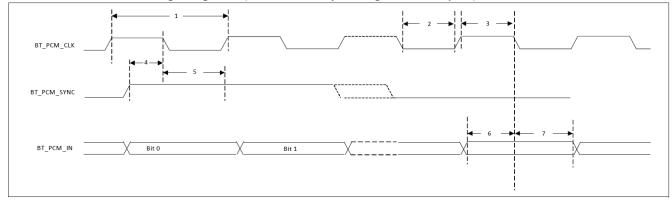
PCM Timing Diagram (Long Frame Sync, Slave Mode)



PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	-	12	MHz
2	PCM bit clock LOW	41	_	_	ns
3	PCM bit clock HIGH	41	_	_	ns
4	PCM_SYNC setup	8	-	-	ns
5	PCM_SYNC hold	8	-	-	ns
6	PCM_OUT delay	0	-	25	ns
7	PCM_IN setup	8	-	-	ns
8	PCM_IN hold	8	_	_	ns
9	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0		25	ns

PCM Burst Mode Timing diagram (Receive only, Short Frame Sync)


PCM Burst Mode (Receive Only, Short Frame Sync)

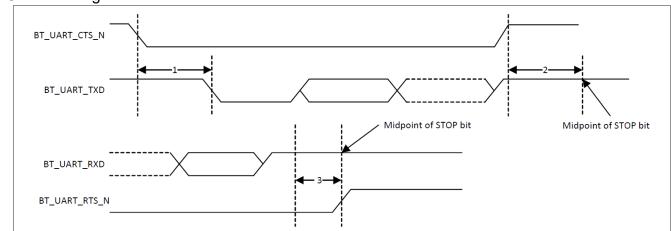
Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	_	24	MHz
2	PCM bit clock LOW	20.8	_	-	ns
3	PCM bit clock HIGH	20.8	_	-	ns
4	PCM_SYNC setup	8	_	-	ns
5	PCM_SYNC hold	8	_	-	ns
6	PCM_IN setup	8	_	_	ns
7	PCM_IN hold	8	_	_	ns

19

■ PCM Burst Mode Timing diagram (Receive only, Long Frame Sync)

PCM Burst Mode (Receive Only, Long Frame Sync)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	_	24	MHz
2	PCM bit clock LOW	20.8	_	-	ns
3	PCM bit clock HIGH	20.8	_	-	ns
4	PCM_SYNC setup	8	_	-	ns
5	PCM_SYNC hold	8	_	-	ns
6	PCM_IN setup	8	-	_	ns
7	PCM_IN hold	8	_	_	ns



3.4.2 UART Interface

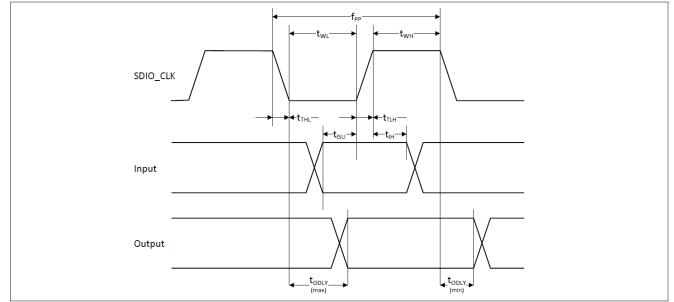
The AW-XM632-SURX UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The baud rate may be selected through a vendor-specific UART HCI command. UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through the AHB interface through either DMA/CPU. The UART supports the Bluetooth 5.0 UART HCI specification. The default baud rate is 115.2 Kbaud.

The AW-XM632-SURX UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP). It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.

Normally, the UART baud rate is set by a configuration record downloaded after device reset and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The AW-XM632-SURX UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within $\pm 2\%$.

UART Timing

UART Timing specifications


Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	Delay time, BT_UART_CTS_N low to BT_UART_TXD valid	_	_	1.5	Bit periods
2	Setup time, BT_UART_CTS_N high before midpoint of stop bit	-	-	0.5	Bit periods
3	Delay time, midpoint of stop bit to BT_UART_RTS_N high	_	—	0.5	Bit periods

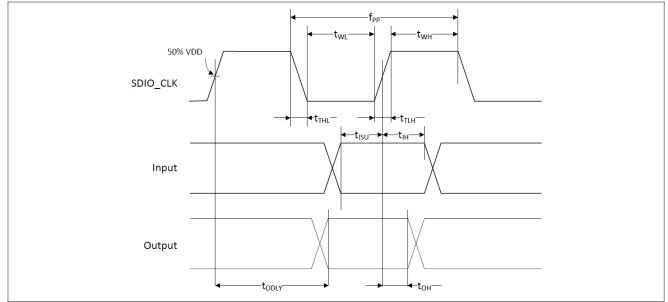
21

3.4.3 SDIO Interface

SDIO Bus Timing (Default Mode)

SDIO Bus Timing^[1] Parameters (Default Mode)

Parameter	Symbol	Minimum	Typical	Maximum	Unit			
SDIO CLK (All values are referred to minimum VIH and maximum VIL ^[2])								
Frequency – Data Transfer mode	f _{PP}	0	_	25	MHz			
Frequency – Identification mode	fod	0	_	400	kHz			
Clock low time	tw∟	10	_	-	ns			
Clock high time	twн	10	-	-	ns			
Clock rise time	tт∟н	_	-	10	ns			
Clock low time	t⊤н∟	_	-	10	ns			
Inputs: CMD, DAT (referenced to CLK)								
Input setup time	tisu	5	_	-	ns			
Input hold time	tıн	5	-	-	ns			
Outputs: CMD, DAT (referenced to CLK)								
Output delay time – Data Transfer mode	todly	0	_	14	ns			



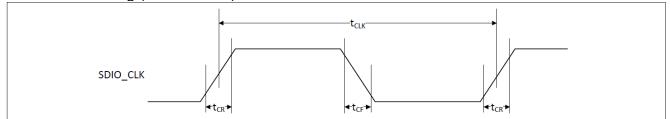
Notes:

1. Timing is based on CL $f \le 40$ pF load on CMD and Data..

2. Min (Vih) = $0.7 \times VDDIO$ and max (Vil) = $0.2 \times VDDIO$.

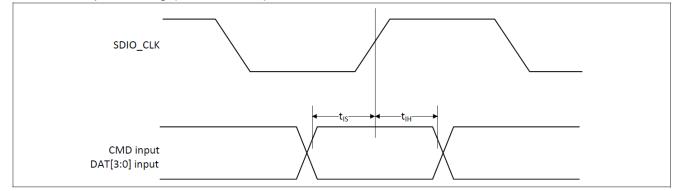
■ SDIO High-Speed (HS) Mode Timing

SDIO Bus Timing^[1] parameters (HS Mode)


Parameter	Symbol	Minimum	Typical	Maximum	Unit				
SDIO CLK (all values are referred to minimum VIH and maximum VIL ^[2])									
Frequency – Data Transfer Mode	f _{PP}	0	_	50	MHz				
Frequency – Identification Mode	fod	0	_	400	kHz				
Clock low time	tw∟	7	_	-	ns				
Clock high time	twн	7	_	-	ns				
Clock rise time	tт∟н	-	_	3	ns				
Clock low time	tтн∟	-	_	3	ns				
Inputs: CMD, DAT (referenced to CLK)									
Input setup Time	tisu	6	_	_	ns				
Input hold Time	tıн	2	_	_	ns				

Outputs: CMD, DAT (referenced to CLK)												
Output delay time – Data Transfer Mode	todly	_	_	14	ns							
Output hold time	tон	2.5	-	-	ns							
Total system capacitance (each line)	CL	_	_	40	pF							

Notes:

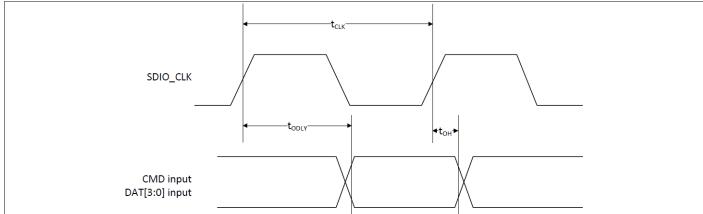

- Timing is based on CL f \leq 40 pF load on CMD and Data. 1.
- 2. Min (Vih) = $0.7 \times VDDIO$ and max (Vil) = $0.2 \times VDDIO$.
- SDIO Clock Timing (SDR Modes)

SDIO Bus Clock Timing parameters (SDR Modes)

Parameter		Minimum		Unit	Comments
		40.0	-	ns	SDR12 mode
-	tськ	20.0	-	ns	SDR25 mode
		10.0	_	ns	SDR50 mode
		4.8	-	ns	SDR104 mode
_	t _{CR} , t _{CF}	-	0.2 x tclк		t_{CR} , t_{CF} < 2.00 ns (max) @100 MHz, CCARD = 10 pF t_{CR} , t_{CF} < 0.96 ns (max) @208 MHz, CCARD = 10 pF
Clock duty	_	30.0	70.0	%	_

SDIO Bus Input Timing (SDR Modes)

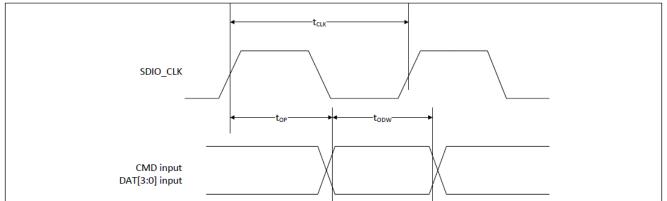
24


Expiry Date: Forever

SDIO Bus Input Timing parameters (SDR Modes)

Symbol	Minimum	Maximum	Unit	Comments
SDR104 N	lode			
tıs	1.4	-	ns	C _{CARD} = 10 pF, VCT = 0.975 V
tıн	0.80	_	ns	C _{CARD} = 5 pF, VCT = 0.975 V
SDR50 Mo	ode			
tıs	3.00	-	ns	C _{CARD} = 10 pF, VCT = 0.975 V
tıн	0.80	_	ns	C _{CARD} = 5 pF, VCT = 0.975 V

■ SDIO Bus Output Timing (SDR Modes up to 100 MHz)


SDIO Bus Output Timing parameters (SDR Modes up to 100 MHz)

Symbol	Minimum	Maximum	mum Unit Comments			
todly	_	7.5	ns	$t_{CLK} \ge 10$ ns CL= 30 pF using driver type B for SDR50		
todly	_	14.0	ns	$t_{CLK} \ge 20$ ns CL= 40 pF using for SDR12, SDR25		
tон	1.5	_	ns	Hold time at the t _{ODLY} (min) CL= 15 pF		

■ SDIO Bus Output Timing (SDR Modes 100 MHz to 208 MHz)

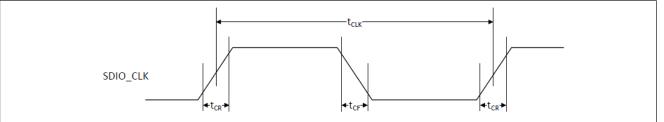
25

SDIO Bus Output Timing parameters (SDR Modes 100 MHz to 208 MHz)

Symbol	Minimum	Maximum	Unit	Comments
top	0	2.0	UI	Card output phase
$\Delta { m top}$	-350	+1550	ps	Delay variation due to temp change after tuning
todw	0.60	_	UI	t _{ODW} =2.88 ns @208 MHz

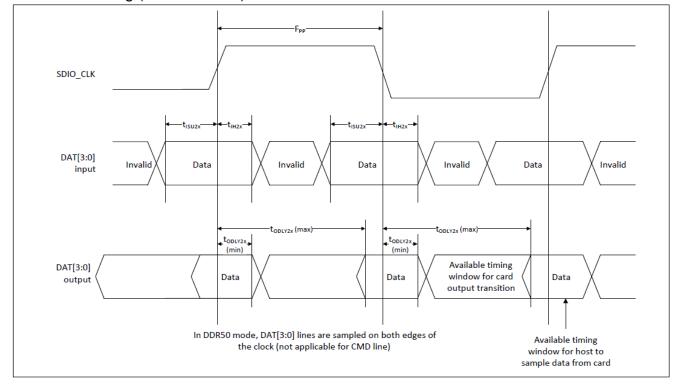
 Δ toP = +1550 ps for junction temperature of Δ toP = 90 degrees during operation

 Δ toP = -350 ps for junction temperature of Δ toP = -20 degrees during operation


 Δ toP = +2600 ps for junction temperature of Δ toP = -20 to +125 degrees during operation

■ △ tOP Consideration for Variable Data Window (SDR 104 Mode)

SDIO Clock Timing (DDR50 Mode)



SDIO Bus Clock Timing parameters (DDR50 Mode)

Parameter	Symbol	Minimum	Maximum	Unit	Comments
-	t _{CLK}	20.0	-	ns	DDR50 mode
_	tcr, tcf	_	$0.2 \times t_{CLK}$	ns	t _{CR} , t _{CF} < 4.00 ns (max) @50 MHz, C _{CARD} = 10 pF
Clock duty	_	45.0	55.0	%	_

■ SDIO Data Timing (DDR50 Mode)

SDIO Bus Timing parameters (DDR50 Mode)

SDIO Bus Timing pa			500)		
Parameter	Symbol	Minimum	Maximum	Unit	Comments
Input CMD					
Input setup time	tisu	6.0	_	ns	CCARD < 10pF (1 Card)
Input hold time	tıн	0.8	_	ns	CCARD < 10pF (1 Card)
Output CMD					
Output delay time	todly	_		ns	CCARD < 30pF (1 Card)
Output hold time	tон	1.5	_	ns	CCARD < 15pF (1 Card)
Input DAT					
Input setup time	t _{ISU2x}	3.0	_	ns	CCARD < 10pF (1 Card)
Input hold time	t _{IH2x}	0.8	_	ns	CCARD < 10pF (1 Card)
Output DAT					
Output delay time	todly2x	_	7.5	ns	CCARD < 25pF (1 Card)
Output hold time	todly2x	1.5	_	ns	CCARD < 15pF (1 Card)

FORM NO.: FR2-015_A

28 Responsible Department : WBU

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

3.5 Power up Timing Sequence

AW-XM632-SURX has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operational states. The timing values indicated are minimum required values; longer delays are also acceptable.

3.5.1 Description of Control Signals

■ WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR–gated with the BT_REG_ON input to control the internal AW-XM632-SURX regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled.

BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal AW-XM632-SURX regulators. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high, the Bluetooth section is in reset.
 Note

VBAT and VDDIO should not rise 10%–90% faster than 40 microseconds.

3.5.2 Control Signal Timing Diagrams

32.678 kHz Sleep Clock VBAT* 90% of VH VDDIO 50 JISEC WL_REG_ON *Notes: 1. VBAT and VDDIO should not rise 10%–90% faster than 40 microseconds. 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

■ WLAN = ON, Bluetooth = ON

■ WLAN = OFF, Bluetooth = OFF

																2.678 kH <u>z</u> eep Clock
																VBAT*
 	 	 	 													_REG_ON
 	 	 	 													_REG_ON
 	 	 	 	 	 	 conds	nicrose	an 40 r	ter th	90% fa	10%-	otrise	ould n	DDIO sh	lotes:	*N

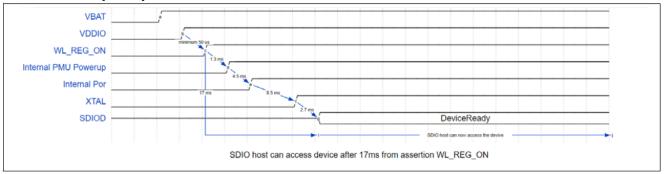
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

WLAN = ON, Bluetooth = OFF 32.678 kHz Sleep Clock VBAT* 90% of VH VDIO 50 µSec WL_REG_ON BT_REG_ON *Notes: 1. VBAT and VDDIO should not rise 10%-90% faster than 40 microseconds. 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

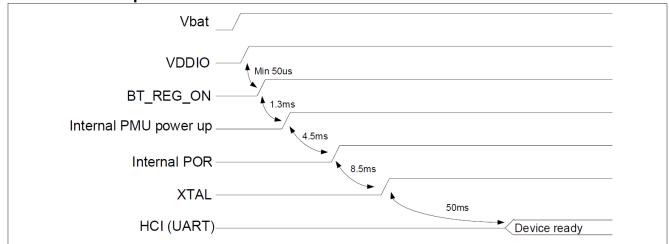
■ WLAN = OFF, Bluetooth = ON

32.678 kHz	
VBAT* 90% of VH	
VDDIO	
WL_REG_ON	
BT_REG_ON *Notes: 1. VBAT and VDDIO should not rise 10%–90% faster than 40 microseconds. 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.	
2. VDAT should be up before of at the same time as VDDO. VDDIO should for be present inst of be field high before VDAT is high.	

FORM NO.: FR2-015_A


Responsible Department : WBU

Expiry Date: Forever


The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

WLAN Boot-Up Sequence for SDIO Host

Bluetooth Boot-Up for HCI

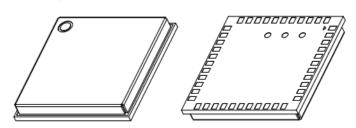
3.6 Power Consumption^{*}

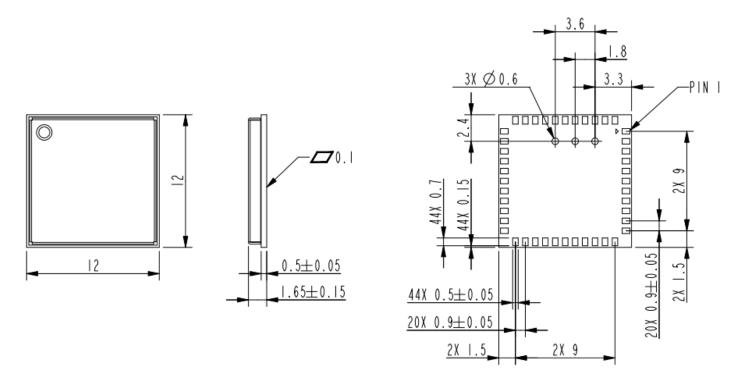
3.6.1 WLAN

TBD

* The power consumption is based on Azurewave test environment, these data for reference only.

3.6.2 Bluetooth


TBD


* The power consumption is based on Azurewave test environment, these data for reference only.

4. Mechanical Information

4.1 Mechanical Drawing

TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.1mm

5. Packaging Information

TBD