

AW-XM632-PUR

IEEE 802.11 a/b/g/n/ac/ax Wi-Fi 6E

+ Bluetooth 6.0 Combo Module

Datasheet

Rev.C

DF

(For Standard)

1

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.

Features

Wi-Fi

- 802.11a/b/g/n/ac/ax compliant, tri-band capable (2.4/5/6 GHz).
- 5/6 GHz: 20/40/80-MHz channels, 1024-QAM, 1×1 providing up to 600 Mbps PHY data rate.
- 2.4 GHz: 20/40[1]-MHz channels, 1024-QAM, 1x1 providing up to 287 Mbps PHY date rate.
- 802.11ax STA mode and Soft AP mode with • 11ax scheduled access.
- Supports 802.11d, h, k, r, v, w, ai.
- On-chip power amplifiers and low-noise • amplifiers.
- Supports multipoint external coexistence interface to optimize bandwidth utilization with other co-located wireless technologies such as LTE.
- Fast VSDB (Virtual Simultaneous Dual Band). •
- Worldwide regulatory Global support: supported products with worldwide homologated design.
- Integrated Arm® Cortex® R4 processor with tightly coupled memory for complete WLAN subsystem functionality. This architecture offloads the host processor completely from WLAN functionality.
- Transmission and reception of HE-SU and HE-ER-SU PPDU.
- Reception of HE-MU PPDU-OFDMA/MU-MIMO Frame.
- Transmission of HE-TB PPDU (Uplink MU OFDMA).

Bluetooth

FORM NO.: FR2-015 A

- Bluetooth 6.0 (BDR + EDR + BLE). •
- All Bluetooth 5.0/5.1/5.2 optional features supported including LE-Audio.
- Supports ISOAL HCI Enhancement (6.0) to enhance low latency and high reliable audio.

- Dedicated Bluetooth® RF path for best Wi-Fi + Bluetooth coexistence performance.
- Bluetooth Class 1 or Class 2 transmitter operation.
- Supports extended synchronous connections (eSCO), for enhanced voice quality by allowing for retransmission of dropped packets.
- Adaptive frequency hopping (AFH) for reducing radio frequency interference.
- Interface support, host controller interface • (HCI) using a high-speed UART interface and PCM/I2S for audio data.
- Supports multiple simultaneous Advanced Audio Distribution Profiles (A2DP) for stereo sound.
- On-chip memory includes 512 KB SRAM and 2 MB ROM.

Interface

- PCIe Gen2 (3.0 Compliant) for WLAN: complies with PCI Express base specification revision 3.0 for x1 lane and power management running at Gen2 speeds.
- HCI-UART, PCM/I2S for Bluetooth.

Coexistence

- Built-in advanced algorithms for Wi-Fi + Bluetooth coexistence.
- 2-wire SECI for external 3rd party Bluetooth®/GPS/LTE radios.

General

- Fully integrated programmable dynamic Power Management Unit.
- Supports 1.8 V VDDIO.

Expiry Date: Forever

Responsible Department : WBU The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

 Supports 1340 Bytes of OTP shared between Bluetooth and WLAN for storing board parameters.

Revision History

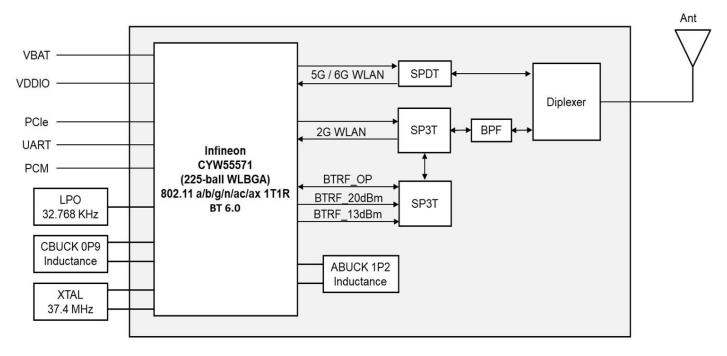
Document NO: R2-2632-DST-01

Version	Revision Date	DCN NO.	Description	Initials	Approved
Α	2024/01/18	DCN030965	Initial Version	YuFu Chen	N.C. Chen
В	2024/07/19	DCN031976	 Change model name Added RF specifications 	YuFu Chen	N.C. Chen
С	2025/03/04	DCN033614	 Updated Bluetooth certifie d version Updated Module Weight Updated ESD Specification Updated Power Consumption Updated Packaging Information 	YuFu Chen	N.C. Chen

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of AzureWave.Expiry Date: Forever

Table of Contents

Features	2
Revision History	4
Table of Contents	5
1. Introduction	6
1.1 Product Overview	6
1.2 Block Diagram	6
1.3 Specifications Table	7
1.3.1 General	7
1.3.2 WLAN	7
1.3.3 Bluetooth	10
1.3.4 Operating Conditions	
1.4 Frequency references	
1.4.1 XTAL requirements and performance	
1.4.2 External 32.768 kHz sleep clock specifications	12
2. Pin Definition	13
2.1 Pin Map	13
2.2 Pin Table	
3. Electrical Characteristics	17
3.1 Absolute Maximum Ratings	
3.2 Recommended Operating Conditions	17
3.3 Digital IO Pin DC Characteristics	17
3.4 Host Interface	
3.4.1 PCM Interface Timing	
3.4.2 UART Interface	
3.4.3 PCI Express Interface	
3.5 Power up Timing Sequence	
0.5.4. Descriptions of Ocustual Oliverals	
3.5.1 Description of Control Signals	
3.5.2 Control Signal Timing Diagrams	
3.5.2 Control Signal Timing Diagrams	29
3.5.2 Control Signal Timing Diagrams 3.6 Power Consumption [*] 3.6.1 WLAN	29 29
3.5.2 Control Signal Timing Diagrams 3.6 Power Consumption [*] 3.6.1 WLAN 3.6.2 Bluetooth	29 29 30
3.5.2 Control Signal Timing Diagrams 3.6 Power Consumption * 3.6.1 WLAN 3.6.2 Bluetooth 4. Mechanical Information	29 29 30 31
3.5.2 Control Signal Timing Diagrams 3.6 Power Consumption [*] 3.6.1 WLAN 3.6.2 Bluetooth	


1. Introduction

1.1 Product Overview

The AW-XM632-PUR device provides the highest level of integration for commercial and Industrial IoT wireless systems with integrated tri-band 1x1 Wi-Fi 6E WLAN MAC/baseband/radio, Bluetooth 6.0 MAC/baseband/radio, and integrated Power Management Unit. WLAN and Bluetooth radios also include on-chip power amplifiers and low-noise amplifiers to further reduce the need for external components.

WLAN interfaces to host processor through a PCIe v3.0 Gen2 interface while Bluetooth host interface is provided through high-speed 4-wire UART interface. Additionally, the Bluetooth section supports PCM and I2S interfaces for audio applications. AW-XM632-PUR is qualified to operate across Industrial (-40°C to +85°C) temperature.

1.2 Block Diagram

AW-XM632-PUR Block Diagram

1.3 Specifications Table

1.3.1 General

Features	Description
Product Description	802.11 a/b/g/n/ac/ax Wi-Fi 6E + Bluetooth 6.0 Combo Module
Major Chipset	Infineon CYW55571 WLBGA
Host Interface	Wi-Fi + BT → PCIe + UART
Dimension	12 mm x 12 mm x 1.93 mm
Form factor	LGA, 49 pins
Antenna	Tri-band 1x1 ANT : Wi-Fi/Bluetooth → TX/RX
Weight	0.6 (g)

1.3.2 WLAN

Features	Description
WLAN Standard	IEEE 802.11 a/b/g/n/ac/ax
WLAN VID/PID	N/A
WLAN SVID/SPID	N/A
Frequency Rage	WLAN: 2.4 / 5 / 6 GHz Band
Modulation	DSSS DBPSK(1Mbps), DQPSK(2Mbps), CCK(11/5.5Mbps) OFDM BPSK(9/6Mbps/MCS0), QPSK(18/12Mbps/MCS1~2), 16-QAM(36/24Mbps/MCS3~4), 64-QAM(72.2/54/48Mbps/MCS5~7), 256-QAM(MCS8~9), 1024-QAM(MCS10~11)
Number of Channels	 2.4GHz USA, Canada and Taiwan – 1 ~ 11 China, Most European Countries – 1 ~ 13 Japan, 1 ~ 13 5GHz USA, EUROPE – 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 149, 153, 157, 161, 165 6GHz CH1~CH233

	2.4G				
		Min	Тур	Max	Unit
	11b (11Mbps) @EVM<35%	16	18	20	dBm
	11g (54Mbps) @EVM≦-25 dB	15	17	19	dBm
	11n (HT20 MCS7) @EVM≦-27 dB	14.5	16.5	18.5	dBm
	11ax (HE20 MCS11) @EVM≦-35 dB	12	14	16	dBm
	5G				
		Min	Тур	Max	Unit
	11a (54Mbps) @EVM<-25 dB	14	16	18	dBm
	11n (HT20 MCS7) @EVM≦-27 dB	14	16	18	dBm
	11n (HT40 MCS7) @EVM≦-27 dB	14	16	18	dBm
Output Power ¹ (Board Level Limit)**	11ac (VHT20 MCS8) @EVM≦-30 dB	13.5	15.5	17.5	dBm
	11ac (VHT40 MCS9) @EVM≦-32 dB	12.5	14.5	16.5	dBm
	11ac (VHT80 MCS9) @EVM≦-32 dB	12	14	16	dBm
	11ax (HE20 MCS11) @EVM≦-35 dB	12.5	14.5	16.5	dBm
	11ax (HE40 MCS11) @EVM≦-35 dB	12	14	16	dBm
	11ax (HE80 MCS11) @EVM≦-35 dB	11.5	13.5	15.5	dBm
	6G				
		Min	Тур	Max	Unit
	11ax (HE20 MCS11) @EVM≦-35 dB	10	12	14	dBm
	11ax (HE40 MCS11) @EVM≦-35 dB	9	11	13	dBm
	11ax (HE80 MCS11) @EVM≦-35 dB	8	10	12	dBm

¹ Unless otherwise stated, limit values apply for an ambient temperature of +25 °C.

8 Responsible Department : WBU

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

	2.4G					
		Min	Тур	Max	Unit	
	11b (11Mbps)		88	85	dBm	
	11g (54Mbps)		76	73	dBm	
	11n (HT20 MCS7)		74	71	dBm	
	11ax (HE20 MCS11)		63	60	dBm	
					u Dini	
	5G					
		Min	Тур	Max	Unit	
	11a (54Mbps)		74	71	dBm	
	11n (HT20 MCS7)		72	69	dBm	
	11n (HT40 MCS7)		69	66	dBm	
Receiver Sensitivity**	11ac (VHT20 MCS8)		67	64	dBm	
Receiver Sensitivity	11ac (VHT40 MCS9)		63	60	dBm	
	11ac (VHT80 MCS9)		60	57	dBm	
	11ax (HE20 MCS11)		60	57	dBm	
	11ax (HE40 MCS11)		56	53	dBm	
	11ax (HE80 MCS11)		55	52	dBm	
	· · · · · · · · · · · · · · · · · · ·					
	6G					
		Min	Тур	Max	Unit	
	11ax (HE20 MCS11)		56	53	dBm	
	11ax (HE40 MCS11)		54	51	dBm	
	11ax (HE80 MCS11)		52	49	dBm	
	802.11b: 1, 2, 5.5, 11Mb	•				
	802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps					
	802.11n: MCS0~7 HT20/HT40					
Data Rate	802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps					
	802.11ac: MCS0~8 VHT20					
	802.11ac: MCS0~9 VHT40/VHT80					
	802.11ax: MCS10~11 HE20/HE40/HE80					
	• WEP					
	WPA/WPA2/WPA3 Enterprise with 192-bit encryption					
Security	 WMM, WMM-PS (U-APSD), WMM-SA AFS (handware seestanter) 					
,	 AES (hardware acc TKID (bardware acc 					
	 TKIP (hardware accelerator) CKIP (activere accelerator) 					
* If you have any cartification	CKIP (software sup questions about output pow		atoot EAE dir	o o thu		

* If you have any certification questions about output power please contact FAE directly **Tx power variation ±3.0 dB for process, voltage and temperature variation across –40°C to +85°C.

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

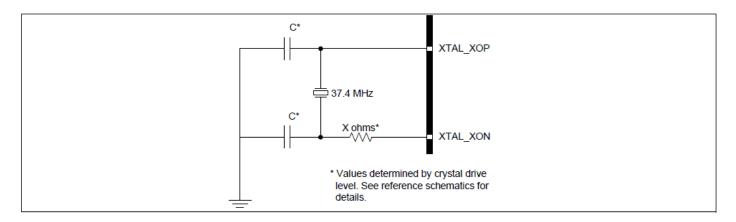
1.3.3 Bluetooth

Features	Description				
Bluetooth Standard	Bluetooth 6.0				
Bluetooth VID/PID	N/A				
Frequency Rage	2400~2483.5MHz				
Modulation	GFSK (1Mbps), Π/4DQPSK (2Mbps) and 8DPSK (3Mbps)				
Output Power*	BDR Low Energy (2MHz)	Min 3 3	Тур 6 6	Max 9 9	Unit dBm dBm
Receiver Sensitivity**	BDR EDR Low Energy (2MHz)	Min	Typ -90 -86 -92	Max -87 -83 -89	Unit dBm dBm dBm

* If you have any certification questions about output power please contact FAE directly ** Project is in engineering stage, RF performance is still being verified.

1.3.4 Operating Conditions

Features	Description				
	Operating Conditions				
Voltage	3.3V				
Operating Temperature	-40°C to 85°C				
Operating Humidity	less than 85% R.H.				
Storage Temperature	-40°C to 125°C				
Storage Humidity	less than 60% R.H.				
	ESD Protection				
Human Body Model	1000V				
Changed Device Model	250V				


FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of AzureWave.Expiry Date: Forever

1.4 Frequency references

1.4.1 XTAL requirements and performance

AW-XM632-PUR can use an external crystal to provide a frequency reference. The recommended configuration for the crystal oscillator including all external components. Consult the reference schematics for the latest configuration.

A fractional-N synthesizer in AW-XM632-PUR generates radio frequencies, clocks, and data/packet timing, enabling it to operate using a wide selection of frequency references.

The recommended default frequency reference is a 37.4 MHz crystal. The signal characteristics for the crystal oscillator interface are listed in Table.

Parameter	Conditions/Notes	Crystal ¹			Unit
Farameter	Conditions/Notes	Min	Тур	Max	Unit
Frequency	2.4G, 5G, and 6G bands: IEEE 802.11ac/ax operation	-	37.4	-	MHz
Frequency tolerance over the lifetime of the equipment, including temperature ²	Without trimming	-20.0	-	20.0	ppm
Crystal load capacitance	-	-	12.0	-	pF
ESR	-	-	-	60.0	Ω
Drive level	External crystal must be able to tolerate this drive level.	200	-	-	μW
	Resistive	-	-	-	kΩ
Input impedance XTAL_XOP	Capacitive	-	-	7.5	pF

Notes:

Use XTAL_XOP and XTAL_XON. 1.

It is the responsibility of the equipment designer to select oscillator components that comply with these 2. specifications.

11

Expiry Date: Forever

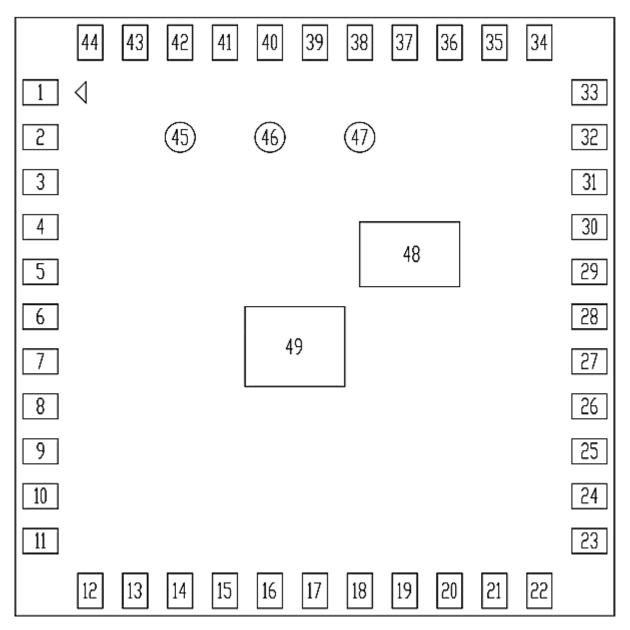
FORM NO.: FR2-015 A Responsible Department : WBU The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

1.4.2 External 32.768 kHz sleep clock specifications

AW-XM632-PUR requires an external low-frequency clock for low-power mode timing. An external 32.768 kHz precision oscillator which meets the requirements listed must be used.

Parameter	LPO clock	Unit
Nominal input frequency	32.768	kHz
Frequency accuracy	±250	ppm
Duty cycle	30 – 70	%
Input signal amplitude	200–1800	mV, p–p
Signal type	Square-wave or sine-wave	-
Input impedance ¹	> 100k	Ω
Clock jittor ² (during initial startup)	< 5	pF
Clock jitter ² (during initial startup)	< 10,000	ppm

Notes:


2. The LPO_IN input receiver has ac-coupled capacitance on the input with the feedback resistor to maintain the common mode around VDDIO/2 and power supply noise should be maintained less than 100mV to avoid any false glitches before the time constant (ac- coupled capacitance * feedback resistor, i.e., 100 μs) settles down.

^{1.} When power is applied or switched off.

2. Pin Definition

2.1 Pin Map

AW-XM632-PUR Pin Map (Top View)

 13

 FORM NO.: FR2-015_A
 Responsible Department : WBU
 Expiry Date: Forever

 The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

2.2 Pin Table

Pin No	Definition	Basic Description	Voltage	Туре
1	GND	Ground.	-	GND
2	NC	Floating		-
3	GND	Ground.	-	GND
4	GND	Ground.	-	GND
5	ANT	WLAN/BT RF ANT.		RF
6	GND	Ground.	-	GND
7	GND	Ground.	-	GND
8	BT_PCM_OUT	PCM data output.	VDDIO	0
9	BT_PCM_CLK	PCM clock; can be master (output) or slave (input).	VDDIO	I/O
10	BT_PCM_IN	PCM data input.	VDDIO	Ι
11	BT_PCM_SYNC	PCM sync, can be master (output) or slave (input).	VDDIO	I/O
12	BT_UART_CTS_N	UART clear-to-send. Active-low clear-to-send signal for the HCI UART interface.	VDDIO	Ι
13	BT_UART_RXD	UART serial input. Serial data input for the HCI UART interface.	VDDIO	I
14	BT_UART_TXD	UART Serial Output. Serial data output for the HCI UART interface.	VDDIO	0
15	BT_UART_RTS_N	UART request-to-send. Active-low request-to-send signal for the HCI UART interface. BT LED control pin.	VDDIO	0
16	BT_DEV_WAKE	Bluetooth DEVICE WAKE.	VDDIO	I/O
17	BT_REG_ON	Used by the PMU to power up or power down the internal regulators used by the Bluetooth® section. When deasserted, this pin holds the Bluetooth section in reset. This pin has an internal 50 k Ω pull-down resistor that is auto enabled/disabled by programming.	VDDIO	I
18	GND	Ground.	-	GND
19	WL_HOST_WAKE	WLAN HOST_WAKE.	VDDIO	I/O
20	VBAT	3.3V power pin.	3.3V	PWR
21	GND	Ground.	-	GND
22	CSR_VLX	CSR Power Stage Output to Inductor.	0.9V	0

FORM NO.: FR2-015_A

14 Responsible Department : WBU

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

		echnologies, mc.		
23	CBUCK_0P9	Internal Buck 0.9V voltage generation pin.	0.9V	Ι
24	GND	Ground.	-	GND
25	PCIE_TDP	PCIE Transmitter Differential Pair Positive Output.	-	0
26	PCIE_TDN	PCIE Transmitter Differential Pair Negative Output.	-	0
27	GND	Ground.	-	GND
28	PCIE_RDP	PCIE Receiver Differential Pair Negative Input.	-	I
29	PCIE_RDN	PCIE Receiver Differential Pair Positive Input.		I
30	GND	Ground.	-	GND
31	PCIE_REFCLKN	PCI Express differential clock input Negative.	-	Ι
32	PCIE_REFCLKP	PCI Express differential clock input Positive.	-	I
33	GND	Ground.	-	GND
34	LPO_IN	External Low Power Clock input (32.768KHz).	-	I
35	GND	Ground.	-	GND
36	XTAL_OUT	External Xtal Output (37.4MHz).		0
37	XTAL_IN	External Oscillator Input. (37.4MHz).	-	I
38	GND	Ground.	-	GND
39	BT_HOST_WAKE	Bluetooth HOST WAKE.	-	I/O
40	PCIE_CLKREQ_L	PCIe clock request signal which indicates when the REFCLK to the PCIe interface can be gated. 1 = the clock can be gated. 0 = the clock is required.	-	OD
41	PCIE_PME_L	PCI power management event output. Used to request a change in the device or system power state. The assertion and deassertion of this signal is asynchronous to the PCIe reference clock. This signal has an open-drain output structure, as per the PCI Bus Local Bus Specification, revision 2.3.	-	OD
42	PCIE_PREST_L	PCIe System Reset. This input is the PCIe reset as defined in the PCIe base specification v1.1	-	Ι
43	VDDIO	1.8 V IO Supply for WLAN GPIOs.	1.8V	PWR
44	WL_REG_ON	Used by the PMU to power up or power down the internal AW-XM632-PUR regulators used by the WLAN section. When deasserted, this pin holds the WLAN section in	VDDIO	I

FORM NO.: FR2-015_A

15 Responsible Department : WBU

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

		reset. This pin has an internal 50 K Ω pull-down resistor that is auto enabled/disabled by programming.		
45	GPIO_2	GPIO configuration pin	VDDIO	I/O
46	GPIO_3	GPIO configuration pin	VDDIO	I/O
47	GPIO_4	GPIO configuration pin	VDDIO	I/O
48	GND	Ground.	-	GND
49	GND	Ground.	-	GND

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VBAT	DC supply for the VBAT and PA driver supply	-0.5	-	6.0	V
VDDIO	DC supply voltage for digital I/O	-0.5	-	2.2	V
Tj	Maximum junction temperature	-	-	125	°C

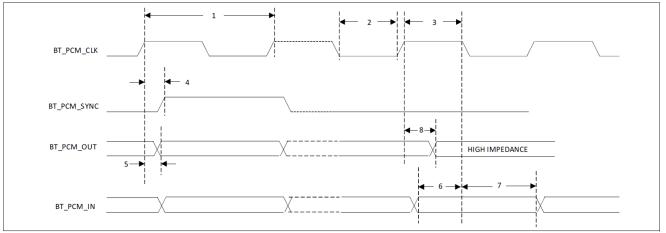
3.2 Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VBAT	Power supply for Internal Regulator	3.13	3.3	3.47	V
VDDIO	DC supply voltage for digital I/O	1.71	1.8	1.89	V

3.3 Digital IO Pin DC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
Digital I/O	pins, VDDIO=1.8V				
Vін	Input high voltage	0.65 × VDDIO	-	-	V
VIL	Input low voltage	-	-	0.35 × VDDIO	V
Vон	Output high voltage	VDDIO – 0.40	-	-	V
Vol	Output Low Voltage	-	-	0.45	V
WL_REG_	ON & BT_REG_ON Pir	าร			
-	Input high voltage	1.2	-	VBAT	-
-	Input low voltage	-	-	0.3	-

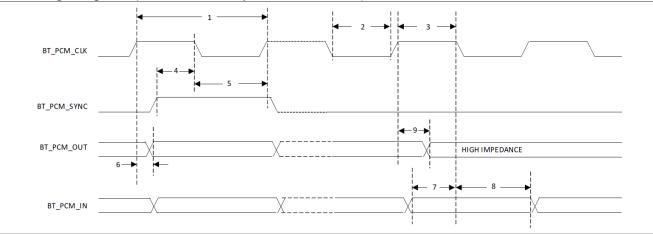
 FORM NO.: FR2-015_A
 Responsible Department : WBU
 Expiry Date: Forever


 The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.
 Expiry Date: Forever

3.4 Host Interface

3.4.1 PCM Interface Timing

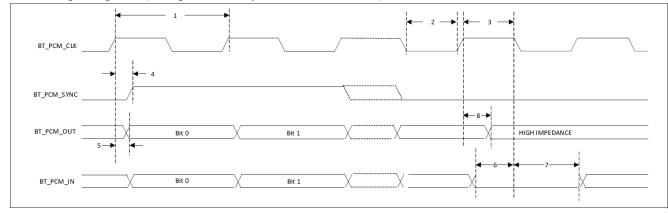
PCM Timing Diagram (Short Frame Sync, Master Mode)



PCM Interface Timing Specifications (Short Frame Sync, Master Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	-	12	MHz
2	PCM bit clock LOW	41	_	_	ns
3	PCM bit clock HIGH	41	_	_	ns
4	PCM_SYNC delay	0	_	25	ns
5	PCM_OUT delay	0	_	25	ns
6	PCM_IN setup	8	_	_	ns
7	PCM_IN hold	8	_	_	ns
8	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0	-	25	ns

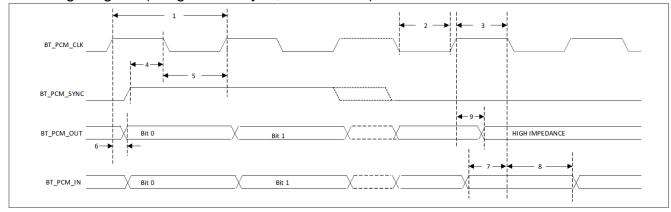
PCM Timing Diagram (Short Frame Sync, Slave Mode)



PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	-	12	MHz
2	PCM bit clock LOW	41	_	_	ns
3	PCM bit clock HIGH	41	_	_	ns
4	PCM_SYNC setup	8	_	_	ns
5	PCM_SYNC hold	8	-	-	ns
6	PCM_OUT delay	0	_	25	ns
7	PCM_IN setup	8	_	_	ns
8	PCM_IN hold	8	_	_	ns
9	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0		25	ns

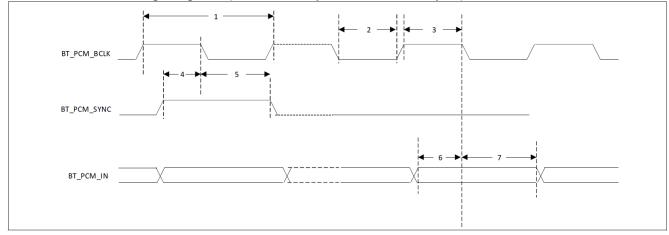
PCM Timing Diagram (Long Frame Sync, Master Mode)



PCM Interface Timing Specifications (Long Frame Sync, Master Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	-	12	MHz
2	PCM bit clock LOW	41	-	-	ns
3	PCM bit clock HIGH	41	-	-	ns
4	PCM_SYNC delay	0	-	25	ns
5	PCM_OUT delay	0	-	25	ns
6	PCM_IN setup	8	-	-	ns
7	PCM_IN hold	8	-	-	ns
8	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0	_	25	ns

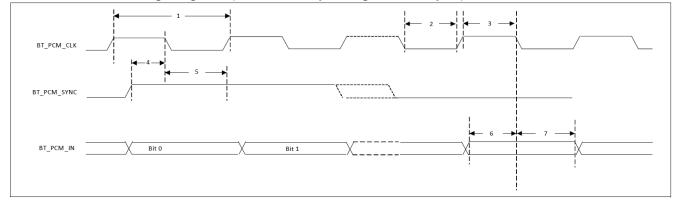
PCM Timing Diagram (Long Frame Sync, Slave Mode)



PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	_	12	MHz
2	PCM bit clock LOW	41	_	-	ns
3	PCM bit clock HIGH	41	_	-	ns
4	PCM_SYNC setup	8	_	-	ns
5	PCM_SYNC hold	8	_	-	ns
6	PCM_OUT delay	0	_	25	ns
7	PCM_IN setup	8	_	-	ns
8	PCM_IN hold	8	_	_	ns
9	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0		25	ns

PCM Burst Mode Timing diagram (Receive only, Short Frame Sync)



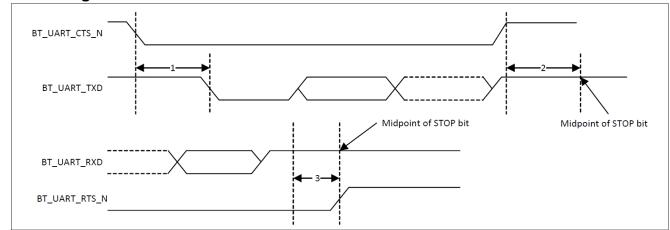
PCM Burst Mode (Receive Only, Short Frame Sync)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	_	-	24	MHz
2	PCM bit clock LOW	20.8	-	_	ns
3	PCM bit clock HIGH	20.8	-	_	ns
4	PCM_SYNC setup	8	-	_	ns
5	PCM_SYNC hold	8	-	_	ns
6	PCM_IN setup	8	-	_	ns
7	PCM_IN hold	8	_	_	ns

PCM Burst Mode Timing diagram (Receive only, Long Frame Sync)

PCM Burst Mode (Receive Only, Long Frame Sync)

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	-	_	24	MHz
2	PCM bit clock LOW	20.8	_	-	ns
3	PCM bit clock HIGH	20.8	_	-	ns
4	PCM_SYNC setup	8	_	-	ns
5	PCM_SYNC hold	8	_	-	ns
6	PCM_IN setup	8	-	_	ns
7	PCM_IN hold	8	-	_	ns



3.4.2 UART Interface

The AW-XM632-PUR UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The baud rate may be selected through a vendor-specific UART HCI command. UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through the AHB interface through either DMA/CPU. The UART supports the Bluetooth 6.0 UART HCI specification. The default baud rate is 115.2 Kbaud.

The AW-XM632-PUR UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP). It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.

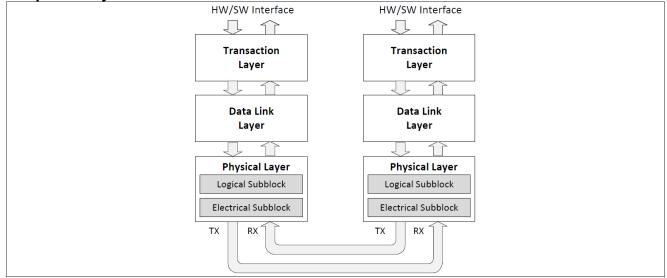
Normally, the UART baud rate is set by a configuration record downloaded after device reset and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The AW-XM632-PUR UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2%.

UART Timing

UART Timing specifications

Reference	Characteristics	Minimum	Typical	Maximum	Unit
1	Delay time, BT_UART_CTS_N low to BT_UART_TXD valid	-	-	1.5	Bit periods
2	Setup time, BT_UART_CTS_N high before midpoint of stop bit	-	-	0.5	Bit periods
3	Delay time, midpoint of stop bit to BT_UART_RTS_N high	—	_	0.5	Bit periods

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.


3.4.3 PCI Express Interface

The PCI Express (PCIe) core on the AW-XM632-PUR is a high-performance serial I/O interconnect that is protocol compliant and electrically compatible with the PCI Express Base Specification v3.0. This core contains all the necessary blocks, including logical and electrical functional sub-blocks to perform PCIe functionality and maintain high-speed links, using existing PCI system configuration software implementations without modification.

Organization of the PCIe core is in logical layers: Transaction Layer, Data Link Layer, and Physical Layer, as shown in Figure. A configuration or link management block is provided for enumerating the PCIe configuration space and supporting generation and reception of System Management Messages by communicating with PCIe layers.

Each layer is partitioned into dedicated transmit and receive units that allow point-to-point communication between the host and AW-XM632-PUR device. The transmit side processes outbound packets while the receive side processes inbound packets. Packets are formed and generated in the Transaction and Data Link Layer for transmission onto the high-speed links and onto the receiving device. A header is added at the beginning to indicate the packet type and any other optional fields.

PCI Express Layer Model

3.5 Power up Timing Sequence

AW-XM632-PUR has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operational states. The timing values indicated are minimum required values; longer delays are also acceptable.

3.5.1 Description of Control Signals

■ WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR–gated with the BT_REG_ON input to control the internal AW-XM632-PUR regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled.

BT_REG_ON: Used by the PMU (OR–gated with WL_REG_ON) to power up the internal AW-XM632-PUR regulators. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high, the Bluetooth section is in reset.
 Note

VBAT and VDDIO should not rise 10%–90% faster than 40 microseconds.

3.5.2 Control Signal Timing Diagrams

32.678 kHz Sleep Clock VBAT* 90% of VH VDIO 50 LISEC WL_REG_ON BT_REG_ON *Notes: 1. VBAT and VDDIO should not rise 10%–90% faster than 40 microseconds. 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

■ WLAN = ON, Bluetooth = ON

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed
in whole or in part without prior written permission of AzureWave.Expiry Date: Forever

■ WLAN = OFF, Bluetooth = OFF

											2.678 kHz leep Clock
											VBAT*
 	 	 									_REG_ON
 	 	 									_REG_ON
 	(f t	10% 00	 	I VDDIO s	*Not						

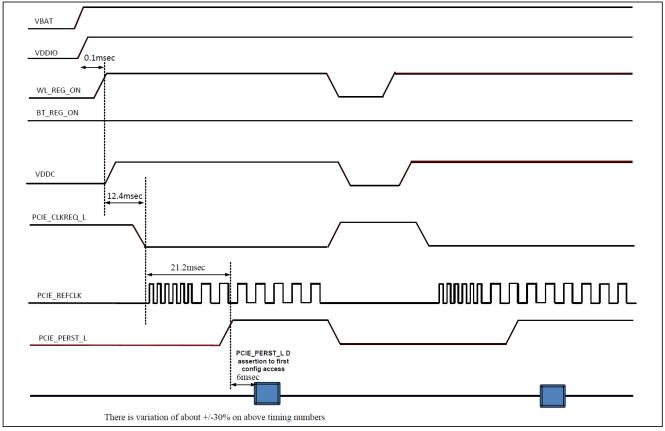
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

WLAN = ON, Bluetooth = OFF 32.678 kHz Sleep Clock VBAT* 90% of VH VDIO 50 µSec WL_REG_ON BT_REG_ON *Notes: 1. VBAT and VDDIO should not rise 10%-90% faster than 40 microseconds. 2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

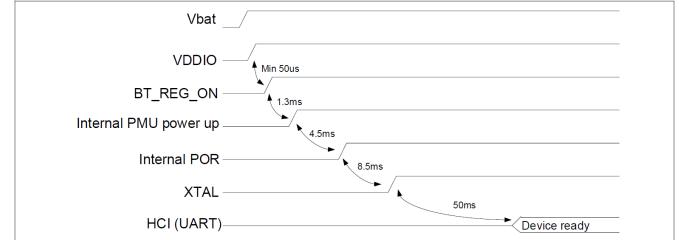
■ WLAN = OFF, Bluetooth = ON

32.678 kHz Sleep Clock	
VBAT*	90% of VH
VDDIO	50 <u>µsec</u>
WL_REG_ON	
BT_REG_ON *Notes:	d VDDIO should not rise 10%-90% faster than 40 microseconds.
	d VDDIO should not rise 10%–90% faster than 40 microseconds. ould be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high. 27

FORM NO.: FR2-015_A


Responsible Department : WBU

Expiry Date: Forever


The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

WLAN Power-Up Sequence for PCIe Host

Bluetooth Boot-Up for HCI

 FORM NO.: FR2-015_A
 Responsible Department : WBU
 Expiry Date: Forever

 The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.
 Expiry Date: Forever

3.6 Power Consumption^{*}

3.6.1 WLAN

No	Item			VBAT_IN=3.3 V		
No.				Max.	Avg.	
1		Pdn *(1) (2) (5)			0.0002	
2	Deep Sleep *(2) (3) (5) (7) (N	ot associate	ed with AP)	57.3	8.8	
3	Power Save DTIM 1 (2.4	GHz)*(2) (4)(5)) (7)	28.7	8.6	
4	Power Save DTIM 1 (5G	Hz) *(2) (4)(5) (7)	25.1	8.5	
5	Power Save DTIM 1 (6G				9.6	
Band	Mode	BW (MHz)	RF Power (dBm)	Transmit ^{*(7)}		
(GHz)				Max.	Avg.	
	11b@11Mbps	20	18	303	285	
	11g@54Mbps	20	17	276	194	
2.4	11n@MCS7	20	16.5	276	186	
	11ax@MCS0 NSS1	20	14	250	215	
	11ax@MCS11 NSS1	20	14	254	165	
	11a@6Mbps	20	16	362	310	
	11n@MCS7	40	16	379	220	
E	11ac@MCS0 NSS1	80	14	370	295	
5	11ac@MCS9 NSS1	80	14	363	215	
	11ax@MCS0 NSS1	80	13.5	373	287	
	11ax@MCS11 NSS1	80	13.5	364	212	
	11ax@MCS0 NSS1	20	12	310	268	
	11ax@MCS11 NSS1	20	12	309	196	
	11ax@MCS0 NSS1	40	11	310	254	
6	11ax@MCS11 NSS1	40	11	305	182	
	11ax@MCS0 NSS1	80	10	305	236	
	11ax@MCS11 NSS1	80	10	304	187	
Band	Mode	BW(MHz)		Rece	eive *(7)	
(GHz)				Max.	Avg.	
	11b@11Mbps	20		71	68	
2.4	11n@MCS7	20		75	71	
	11ax@MCS11 NSS1	20		76	70	
5	11a@54Mbps	20		80	76	
	11n@MCS7	40		90	84	
	11ac@MCS9 NSS1	80		102	95	
	11ax@MCS11 NSS1	80		109	94	
6	11ax@MCS11 NSS1	20		83	77	
	11ax@MCS11 NSS1	40		95	84	
	11ax@MCS11 NSS1	80		109	93	
*Current U	nit, mA				<u>н</u>	

*Current Unit: mA

FORM NO.: FR2-015_A

29 Responsible Department : WBU

Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

No.	ltem			VDDIO=1.8 V	
NO.				Max.	Avg.
1	Pdn *(1) (2) (5)			0.014	0.00048
2	Deep Sleep *(2) (3) (5) (7) (Not associated with AP)			1.2	1.2
3	Power Save DTIM 1 (2.4GHz)*(2) (4)(5) (7)			1.3	1.2
4	Power Save DTIM 1 (5GHz) *(2) (4)(5) (7)			1.3	1.2
5	Power Save DTIM 1 (6GHz) *(2) (4)(5) (6) (7)			1.3	1.2
Band (GHz)		BW RF		Transmit ^{*(7)}	
	Mode	(MHz)	Power (dBm)	Max.	Avg.
2.4	11b@1Mbps	20	18	5.3	5.1
2.4	11ax@MCS11 NSS1	20	14	5.3	5.2
5	11a@6Mbps	20	16	5.3	5.0
	11ax@MCS11 NSS1	80	13.5	5.3	5.2
6	11ax@MCS11 NSS1	80	10	5.3	5.2
Band	Mode	BW(MHz)		Receive ^{*(7)}	
(GHz)	Mode			Max.	Avg.
2.4	11b@11Mbps	20		1.3	1.2
5	11ax@MCS11 NSS1	80		1.3	1.2
6	11ax@MCS11 NSS1	80		1.3	1.2

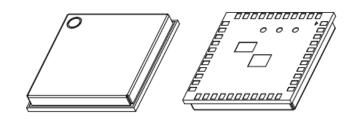
*Current Unit: mA

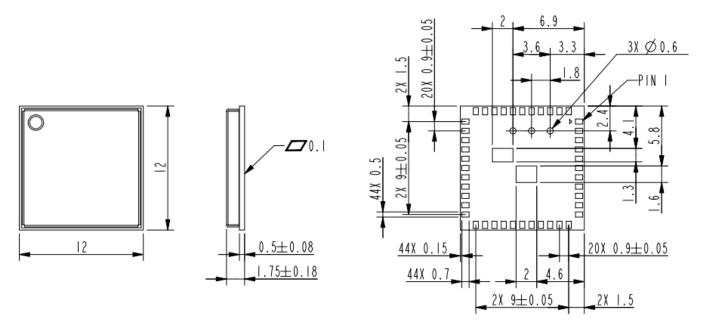
3.6.2 Bluetooth

Mode	Packet Type	RF Power (dBm)	VBAT_IN=3.3 V		
WOUE			Max.	Avg.	
Sleep*(1)	N/A	N/A	0.457	0.036	
Transmit ^{*(1) (2)}	DH5	6	24	16	
Receive ^{*(1) (2)}	DH5	N/A	24	13	

*Current Unit: mA

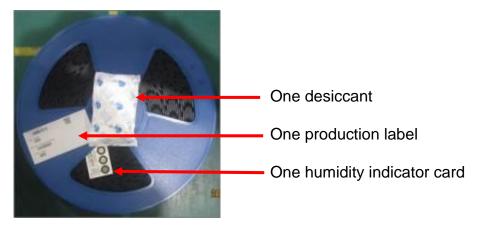
Mode	Packet Type	RF Power (dBm)	VDDIO=1.8 V	
WICCE			Max.	Avg.
Sleep ^{*(1)}	N/A	N/A	22.6	13.0
Transmit ^{*(1) (2)}	DH5	6	313	281
Receive ^{*(1) (2)}	DH5	N/A	311	277


*Current Unit: mA


FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.

4. Mechanical Information

4.1 Mechanical Drawing


TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.1mm

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.

5. Packaging Information

- One reel can pack 1,500pcs 12x12 stamp/LGA modules (整軸產品數量為 1500pcs)
- 2. One production label is pasted on the reel, one desiccant and one humidity indicator card are put on the reel

(卷軸貼上一張生產標籤,並放上一包防潮包及濕度指示卡)

3. One reel is put into the anti-static moisture barrier bag, and then one production label is pasted on the bag

(卷軸放進防靜電鋁箔袋,再貼上一張生產標籤)

4. A bag is put into the anti-static pink bubble wrap (防靜電鋁箔袋放進氣泡袋內)

 32

 FORM NO.: FR2-015_A Responsible Department : WBU Expiry Date: Forever


 The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

One anti-static pink bubble wrap

5. A bubble wrap is put into the inner box and then one label is pasted on the inner box (氣泡袋放進內箱中,再貼上一張生產標籤)

6. 5 inner boxes could be put into one carton

(五個內箱可以放進一個外箱)

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.

 Sealing the carton by transparent tape (使用透明膠帶將外箱進行工字型封箱)

8. One carton label and one box label are pasted on the carton. If one carton is not full, one balance label pasted on the carton

(外箱上貼附出貨標籤和箱號標籤;如不滿箱,需貼附尾數標籤)

FORM NO.: FR2-015_AResponsible Department : WBUExpiry Date: ForeverThe information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosedin whole or in part without prior written permission of AzureWave.