

AW-CM240NF

IEEE 802.11 a/b/g/n/ac Wireless LAN and Bluetooth M.2 Combo Module

Datasheet

Rev. A

0B

(For Standard)

Features

- Integrates CYPRESS solutions of CYW4356
 Wi-Fi /BT Single Chip
- Concurrent Bluetooth and WLAN operation
- ECI—enhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN receives
- Multiple power saving modes for low power consumption
- Lead-free /Halogen Free Design
- 12 mm(L) x 16mm(W) x 1.5mm(H) 132 pin
 LGA package

Bluetooth

- Bluetooth Class 1 or Class 2 transmitter operation
- Supports key features of upcoming Bluetooth standards
- Fully supports Bluetooth Core Specification version 5.0 + (Enhanced Data Rate) EDR features:
 - Adaptive Frequency Hopping (AFH)
 - Quality of Service (QoS)
 - Extended Synchronous Connections (eSCO) — Voice Connections
 - Fast Connect (interlaced page and inquiry scans)
 - Secure Simple Pairing (SSP)
 - Sniff Subrating (SSR)
 - Encryption Pause Resume (EPR)
 - Extended Inquiry Response (EIR)
 - Link Supervision Timeout (LST)
- Multipoint operation with up to seven active slaves
 - Maximum of seven simultaneous active

ACL links

- Maximum of three simultaneous active SCO and eSCO connections with scatternet support
- Full support for power savings modes
 - Bluetooth clock request
 - Bluetooth standard sniff
 - Deep-sleep modes and software regulator shutdown
- Wideband speech support (16 bits linear data, MSB first, left justified at 4K samples/s for transparent air coding, both through I2S and PCM interface)
- Multiple simultaneous A2DP audio stream

WLAN

- IEEE 802.11ac Draft compliant
- Full IEEE 802.11a/b/g/n legacy compatibility with enhanced performance
- IEEE 802.11a/b/g/n/ac dual-band radio with virtual-simultaneous dual-band operation
- IEEE 802.11ac 2x2 MIMO supports for 20, 40, and 80 MHz channels with optional SGI (256 QAM modulation) provides data rates up to 866.7 Mbps.
- Tx and Rx low-density parity check (LDPC) support for improved range and power efficiency.
- Supports IEEE 802.15.2 external coexistence interface to optimize bandwidth utilization with other co-located wireless technologies such as LTE, GPS, or WiMAX
- Supports IEEE 802.11d, e, h, i, r, k, w
- WLAN host interface options
 - PCIe mode complies with PCI Express base specification revision 3.0 for ×1 lane and power management running at Gen1 speeds
- Security–WEP, WPA/WPA2 (personal), AES

(HW), TKIP (HW), CKIP (SW).

- WMM/WMM-PS/WMM-SA
- Proprietary protocol CCXv2/CCXv3/CCXv4/CCXv5

 Integrated CPU with on-chip memory for a complete WLAN subsystem minimizing the need to wake up the applications processor

Revision History

Document NO: R2-2240NF-DST-01

Version	Revision Date	DCN NO.	Description	Initials	Approve d
0.1	2015/03/30		Initial release	Alex Yu	Chihhao Liao
0.2	2015/06/10		● Updated	Stanley Wang	Chihhao Liao
0.3	2016/03/02		 Modified 2-4-2 WLAN GPIO Signals and Strapping Options 	Stanley Wang	Chihhao Liao
0.4	2017/09/15		 Modified Main Chip Model Name Updated Pin descriptions 	Steven Jian	Chihhao Liao
0.5	2017/10/12		 Changed document format Updated 1.4.4 Operating Conditions Updated 4.1 Mechanical Drawing Updated 3. Electrical Characteristics Updated 2.2 Pin Table 	Steven Jian	Chihhao Liao
0.5	2018/05/24		Updated 2.2 Pin Table	Steven Jian	Chihhao Liao
0.6	2018/06/12		Updated format	Steven Jian	Chihhao Liao
0.7	2018/07/25	10	Modified 2.2 Pin TableModified 3.5.2	Steven Jian	Chihhao Liao
8.0	2018/09/20	181	Updated Title	Steven Jian	Chihhao Liao
0.9	2018/11/15		Support BT 5.0	Steven Jian	Chihhao Liao
1.0	2019/02/11	0	Updated 1.4.2Modified 2.1	Steven Jian	Chihhao Liao
A	2020/03/06	DCN016829	 Change Document Format Updated 1.3.1 General Updated 1.3.2 WLAN Updated 1.3.3 Bluetooth Updated Pin 45 Description Updated 3.2 Recommended Operating Conditions Updated 3.4 Host Interface 	Steven Jian	Chihhao Liao

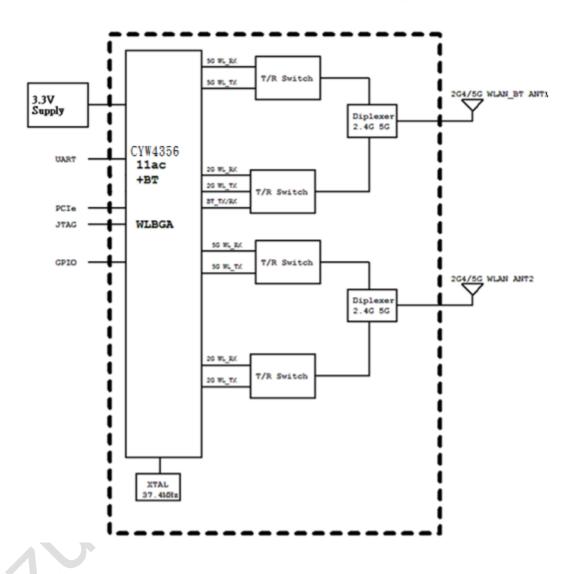
Table of Contents

Revision History	4
1. Introduction	6
1.1 Product Overview	6
1.2 Block Diagram	7
1.3 Specifications Table	8
1.3.1 General	8
1.3.2 WLAN	8
1.3.3 Bluetooth	
1.3.4 Operating Conditions	10
2. Pin Definition	12
2.1 Pin Map	12
2.2 Pin Table	13
3. Electrical Characteristics	17
3.1 Absolute Maximum Ratings	17
3.2 Recommended Operating Conditions	17
3.3 GPIO DC Characteristics	18
3.4 Host Interface	19
3.4.1 PCM Interface Timing	19
3.4.2 PCle	25
3.4.3 UART Interface	25
3.5 Power up Timing Sequence	
3.6 Power Consumption*	29
3.6.1 WLAN	29
3.6.2 Bluetooth	29
4. Mechanical Information	30
4.1 Mechanical Drawing	30
5. Packaging Information	31

1. Introduction

1.1 Product Overview

AzureWave Technologies, Inc. introduces the advanced IEEE 802.11 ac/a/b/g/n 2x2 MIMO WLAN and Bluetooth M.2 combo module - AW-CM240NF. The module is targeted to mobile and embedded devices which need small footprint package, low power consumption, and multiple OS support. The module supports 2.4GHz and 5GHz bands IEEE 802.11ac MAC/baseband/radio and Bluetooth 5.0(Core Standard) + EDR. It also features an integrated Power Management Unit (PMU), Power Amplifiers (PAs), and a Low Noise Amplifier (LNA) to address the needs of mobile devices that require minimal power consumption and compact size. By using AW-CM240NF, the customers can easily enable the Wi-Fi and BT embedded applications with the benefits of high design flexibility, short development cycle, and quick time-to-market.


For the WLAN operation, the AW-CM240NF uses DSSS, OFDM, DBPSK, DQPSK, CCK and QAM baseband modulation technologies. In IEEE 802.11ac mode, the WLAN operation supports rates of MCS0–MCS9 (up to 256 QAM) in 20 MHz, 40 MHz, and 80 MHz channels for data rates up to 867 Mbps. A high level of integration and full implementation of the power management functions specified in the IEEE 802.11 standard minimize the system power requirements by using AW-CM240NF. In addition to the support of WPA/WPA2 (personal) and WEP encryption, the AW-CM240NF also supports the IEEE 802.11i security standard through AES and TKIP acceleration hardware for faster data encryption. For the video, voice and multimedia applications the AW-CM240NF support 802.11e Quality of Service (QoS).

For Bluetooth operation, the AW-CM240NF is Bluetooth 5.0. The Bluetooth transmitter also features a Class 1 power amplifier with Class 2 capability. The AW-CM240NF supports extended Synchronous Connections (eSCO), for enhanced voice quality by allowing for retransmission of dropped packets, and Adaptive Frequency Hopping (AFH) for reducing radio frequency interference. It incorporates all Bluetooth 5.0 features.

1.2 Block Diagram

AW-CM240NF Block Diagram

1.3 Specifications Table

1.3.1 General

Features	Description			
Product Description	IEEE 802.11 a/b/g/n/ac Wireless LAN and Bluetooth M.2 Combo Module			
Major Chipset	CYPRESS CYW4356			
Host Interface	WLAN: PCIe 3.0 (Gen1 speed) Bluetooth: UART			
Dimension	16mm(L) 12xmm(W) x 1.5mm(H)			
Package	M.2 1216 Solder down			
Antenna	HSC Receptacle(refer to 4.1 Mechanical Drawing) Ant 1: Wi-Fi/BT Main Ant 2: WIFI AUX			
Weight	0.6g			

1.3.2 WLAN

Features	Description
WLAN Standard	IEEE 802.11a/b/g/n/ac, Wi-Fi compliant
WLAN VID/PID	14E4/43EC
WLAN SVID/SPID	1A3B/2217
Frequency Rage	WLAN: 2.4 GHz / 5GHz Band
Modulation	DSSS DBPSK(1Mbps), DQPSK(2Mbps), CCK(11/5.5Mbps) OFDM BPSK(9/6Mbps/MCS0), QPSK(18/12Mbps/MCS1~2), 16-QAM(36/24Mbps/MCS3~4), 64-QAM(72.2/54/48Mbps/MCS5~7), 256-QAM(MCS8~9)
Number of Channels	802.11b: USA, Canada and Taiwan - 1 ~ 11 Most European Countries - 1 ~ 13 Japan - 1 ~ 13 802.11g: USA and Canada - 1 ~ 11

Most European Countries − 1 ~ 13

802.11n:

USA and Canada - 1 ~ 11

Most European Countries − 1 ~ 13

802.11a:

USA - 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120,

124, 128, 132, 136, 140, 149, 153, 157, 161, 165

2.4G

2.70					
	Min	Тур	Max	Unit	
11b (11Mbps) @EVM<35%	14	16	18	dBm	
11g (54Mbps) @EVM≦ -25 dB	12	14	16	dBm	
11n (HT20 MCS7) @EVM≦ -27 dB	11	13	15	dBm	
11n (HT40 MCS7) @EVM≤ -27 dB	9	11	13	dBm	

Output Power (Board Level Limit)*

5G

	Min	Тур	Max	Unit
11a (54Mbps) @EVM≦ -25 dB	11	13	15	dBm
11n (HT20 MCS7) @EVM≦ -27 dB	10	12	14	dBm
11n (HT40 MCS7) @EVM≦ -27 dB	8	10	12	dBm
11ac (VHT80 MCS9) @EVM≦ -32 dB	6	8	10	dBm

2.4G

	Min	Тур	Max	Unit
11b (11Mbps)		-88	-78	dBm
11g (54Mbps)		-74	-65	dBm
11n (HT20 MCS7)		-71	-64	dBm
11n (HT40 MCS7)		-68	-61	dBm

Receiver Sensitivity

Data Rate

5G

90					
	Min	Тур	Max	Unit	
11a (54Mbps)		-73	-65	dBm	
11n (HT20 MCS7)		-70	-64	dBm	
11n (HT40 MCS7)		-67	-61	dBm	
11ac (VHT80 MCS9)		-59	-51	dBm	

802.11b: 1, 2, 5.5, 11Mbps

802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps

802.11n: MCS0~7 HT20/HT40

802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps

9

FORM NO.: FR2-015_A Responsible Department : WBU Expiry Date: Forever

The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

	802.11ac: MCS0~8 VHT20
	802.11ac: MCS0~9 VHT40/VHT80
	 ◆ WPA™- and WPA2™- (Personal) support for powerful encryption and authentication
	 AES and TKIP acceleration hardware for faster data encryption and 802.11i compatibility
Security	 Secure Easy Setup[™] for simple Wi-Fi® setup and WPA2/WPA
,	security configuration
	♦ Wi-Fi Protected Setup (WPS)
	♦ WEP
	♦ WMM / WMM-SA
	◆ CKIP(Software)

1.3.3 Bluetooth

Features	Description				
Bluetooth Standard	Bluetooth 2.1+Enhanced Data Rate (EDR) / BT5.0 (Core Standard)				
Bluetooth VID/PID	n/a				
Frequency Rage	2400~2483.5MHz				
Modulation	GFSK (1Mbps), Π/4DQPSK (2Mbps) and 8DPSK (3Mbps)				os)
Output Power	Class 2				
		Min	Тур	Max	Unit
Pagaiyar Sanaitivity	DH5		-92	-82	dBm
Receiver Sensitivity	2DH5		-94	-84	dBm
	3DH5		-88	-78	dBm

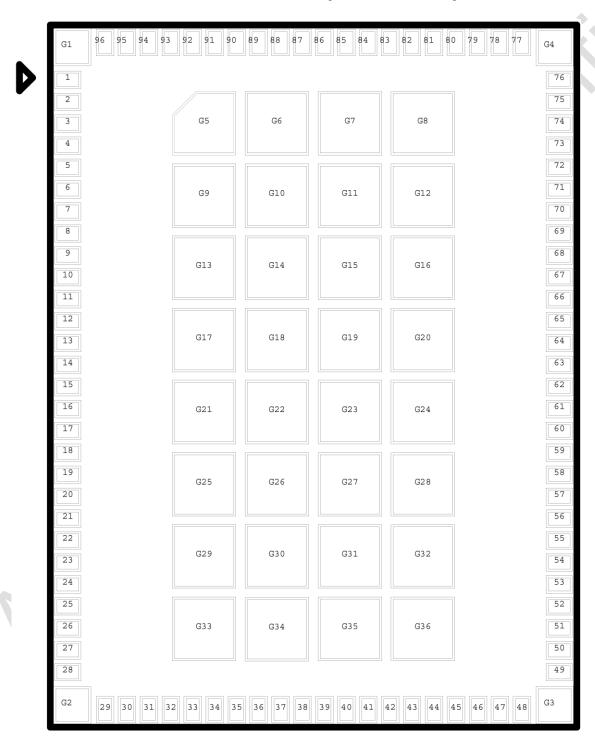
1.3.4 Operating Conditions

Features	Description
Operating Conditions	
Voltage	power supply for host:3.3V+-5%
Operating Temperature	-30~85°C (Functionality is guaranteed. Optimal RF operating is 0~55°C)
Operating Humidity	<85%
Storage Temperature	-40~85°C
Storage Humidity	<60 %

ESD Protection

Human Body Model ±1KV

Changed Device Model ±300V


in whole or in part without prior written permission of AzureWave.

2. Pin Definition

2.1 Pin Map

AW-CM240 Top View Pin Map

2.2 Pin Table

Pin No	Definition	Basic Description	Voltage	Туре
1	NC	No Connect		
2	JTAG_SEL	JTAG test on/off(pull high to enable JTAG)	VIO	l
3	NC	No Connect		
4	3.3V	3.3V Power Supply	3.3V	I
5	3.3V	3.3V Power supply input	3.3V	I
6	GND	System Ground Pin		
7	JTAG_TDO_GPIO _5	GPIO_5 (input/output)	VIO	0
8	GPIO_8	Strapping option(please pull up with 10k resistor)	VIO	I
9	GPIO_9	Strapping option(please pull up with 10k resistor)	VIO	l
10	JTAG_TDI_GPIO_ 4	0: SPROM is absent (default). *Please reserve pull-down resistor	VIO	ı
11	JTAG_TMS_COE X2_GPIO_3	GPIO_3 (input/output)	VIO	I/O
12	JTAG_TCK_COEX 1_GPIO_2	GPIO_2 (input/output)	VIO	I/O
13	JTAG_TRST_N_C OEX0_GPIO_6	GPIO_6 (input/output)	VIO	I/O
14	NC	No Connect		
15	NC	No Connect		
16	NC	No Connect		
17	GND	System Ground Pin		
18	NC	No Connect		
19	NC	No Connect		
20	GND	System Ground Pin		
21	NC	No Connect		
22	NC	No Connect		
23	GND	System Ground Pin		
24	BT_DEV_WAKE	Bluetooth DEV_WAKE.	VIO	l
25	NC	No Connect		
26	GND	System Ground Pin		
27	SLPCLK	External sleep clock input (32.768 kHz).	0.2~3.3 Vp-p	I
28	WL_RFDISABLE_ L_GPIO1	WL_DEV_WAKE/GPIO1	VIO	ı
29	PCIE_WAKEn	PCIe wake signal (output)	VIO	0
30	PCIE_CLKREQn	PCIe clock request (input/output)	VIO	I/O
31	PCIE_PERSTn	PCIe host indication to reset the device (input)	VIO	l
32	GND	System Ground Pin		
33	PCIE_RCLK_N	PCI Express Differential Clock Input—Negative		I
34	PCIE RCLK P	PCI Express Differential Clock Input—Positive		ı

35	GND	System Ground Pin		
36	PCIE_TX_N	PCI Express Transmit Data—Negative		0
37	PCIE_TX_P	PCI Express Transmit Data—Positive		0
38	GND	System Ground Pin		
39	PCIE_RX_N	PCI Express Receive Data—Negative		I
40	PCIE_RX_P	PCI Express Receive Data—Positive		I
41	GND	System Ground Pin		
42	NC	No Connect		
43	NC	No Connect		
44	VIO_SD	Logic level for PCle out-of-band signals.	VIO	I
45	WL_REG_ON	Used by PMU to power up or power down the internal module regulators used by the WLAN section. Also, when deasserted, this pin holds the WLAN section in reset. Pulled up with a 4.7K ohms resistor internally.	VIO	I
46	SDIO_WAKE_L_G PIO 0	Reserve	VIO	0
47	SDIO DAT3	Reserve	VIO	I/O
48	SDIO DAT2	Reserve	VIO	I/O
49	SDIO DAT1	Reserve	VIO	I/O
50	SDIO DATO	Reserve	VIO	I/O
51	SDIO CMD	Reserve	VIO	I/O
52	SDIO CLK	Reserve	VIO	l
53	BT HOST WAKE	Bluetooth HOST_WAKE.	VIO	0
54	UART CTSn	UART_CTSn (input)	VIO	l
55	UART SOUT	UART_TXD (output)	VIO	0
56	UART SIN	UART_RXD (input)	VIO	l
57	UART RTSn	UART_RTSn (output)	VIO	0
58	PCM_SYNC	PCM sync; can be master (output) or slave (input).	VIO	I/O
59	PCM_IN	PCM data input	VIO	1
60	PCM_OUT	PCM data output	VIO	0
61	PCM_CLK	PCM bus clock; can be master (output) or slave (input)	VIO	I/O
62	GND	System Ground Pin		
63	BT_REG_ON	Used by PMU to power up or power down the internal module regulators used by the Bluetooth section. Also, when deasserted, this pin holds the Bluetooth section in reset.	VIO	I
64	WL LFD GPIO 7	It can be used as WL LED.	VIO	0
	BT_I2S_DO_BT_L	_		
65	ED_L	It can be used as BT_LED.	VIO	0
66	NC	No Connect		
67	NC	No Connect		
68	GND	System Ground Pin		
69	USB_D-	Reserve(leave floating)		

70	LICD D.	December (leave fleating)		
70	USB_D+	Reserve(leave floating)		
71	GND	System Ground Pin	0.01/	-
72	3.3V	3.3V Power Supply	3.3V	
73	VIO	Digital I/O Power Supply	VIO	ı
74	GND	System Ground Pin		
75	GND	System Ground Pin		
76	GND	System Ground Pin		
77	GND	System Ground Pin		
78	GND	System Ground Pin		
79	GND	System Ground Pin		
80	GND	System Ground Pin		
81	GND	System Ground Pin		
82	GND	System Ground Pin		
83	GND	System Ground Pin		
84	GND	System Ground Pin		
85	GND	System Ground Pin		
86	GND	System Ground Pin		
87	GND	System Ground Pin		
88	GND	System Ground Pin		
89	GND	System Ground Pin		
90	GND	System Ground Pin		
91	GND	System Ground Pin		
92	GND	System Ground Pin		
93	GND	System Ground Pin		
94	GND	System Ground Pin		
95	GND	System Ground Pin		
96	GND	System Ground Pin		
G1	GND	System Ground Pin		
G2	GND	System Ground Pin		
G3	GND	System Ground Pin		
G4	GND	System Ground Pin		
G5	GND	System Ground Pin		
G6	GND	System Ground Pin		
G7	GND	System Ground Pin		
G8	GND	System Ground Pin		
G9	GND	System Ground Pin		
G10	GND	System Ground Pin		
G11	GND	System Ground Pin		
G12	GND	System Ground Pin		
G13	GND	System Ground Pin		
G14	GND	System Ground Pin		
G15	GND	System Ground Pin		
G16	GND	System Ground Pin		
G17	GND	System Ground Pin		
	SIND	Cystom Oround i in		

G18	GND	System Ground Pin	
G19	GND	System Ground Pin	
G20	GND	System Ground Pin	
G21	GND	System Ground Pin	
G22	GND	System Ground Pin	
G23	GND	System Ground Pin	
G24	GND	System Ground Pin	
G25	GND	System Ground Pin	
G26	GND	System Ground Pin	
G27	GND	System Ground Pin	
G28	GND	System Ground Pin	
G29	GND	System Ground Pin	
G30	GND	System Ground Pin	
G31	GND	System Ground Pin	
G32	GND	System Ground Pin	
G33	GND	System Ground Pin	
G34	GND	System Ground Pin	
G35	GND	System Ground Pin	
G36	GND	System Ground Pin	
		-	

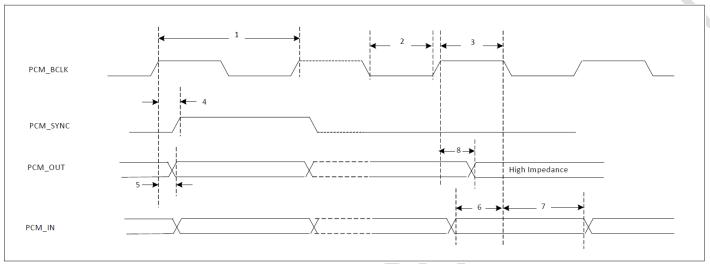
3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Symbol	Parameter	Minimum	Typical	Maximum	Unit
3.3V	Power supply for Internal Regulators	-0.3		5.5	V
VIO	DC supply voltage for digital I/O	-0.5	\ O	3.9	V

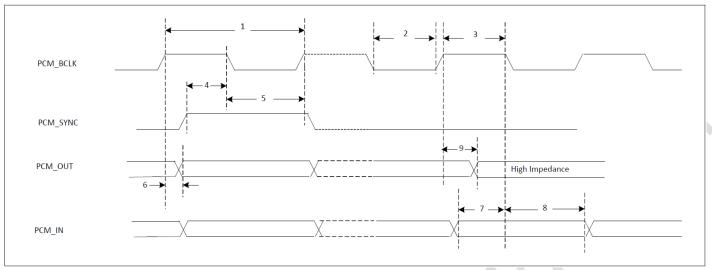
3.2 Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Unit
3.3V	Power supply for Internal Regulators	3.13	3.3	3.46	V


3.3 GPIO DC Characteristics

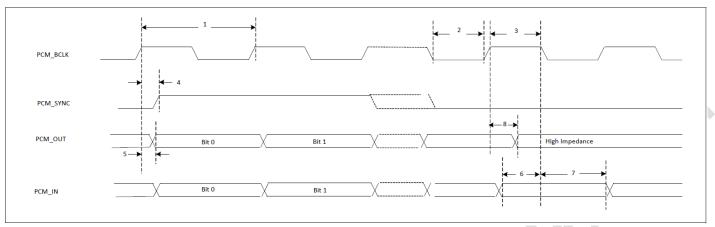
Symbol	Parameter	Minimum	Typical	Maximum	Unit			
PCIe out-	PCIe out-of-band signals VIO_SD =1.8V							
VIH	Input high voltage	1.27	-	-	V			
VIL	Input low voltage	-	-	0.58	V			
VOH	Output High Voltage @ 2mA	1.4	-	-	V			
VOL	Output Low Voltage @ 2mA	-	-	0.45	V			
PCIe out-	of-band signals VIO_SD =3.3V	•			Ÿ			
VIH	Input high voltage	2.06	-		V			
VIL	Input low voltage	-	-	0.82	V			
VOH	Output High Voltage @ 2mA	2.47	-	-	V			
VOL	Output Low Voltage @ 2mA	-	-	0.41	V			
Other Dig	ital Interface VIO=1.8V							
VIH	Input high voltage	1.17	-	-	V			
VIL	Input low voltage	-	,	0.63	V			
VOH	Output High Voltage @ 2mA	1.35	-	-	V			
VOL	Output Low Voltage @ 2mA	10	-	0.45	V			
Other Dig	ital Interface VIO=3.3V							
VIH	Input high voltage	2	-	-	V			
VIL	Input low voltage	-	-	0.8	V			
VOH	Output High Voltage @ 2mA	2.9	-	-	V			
VOL	Output Low Voltage @ 2mA	-	-	0.4	V			

3.4 Host Interface


3.4.1 PCM Interface Timing

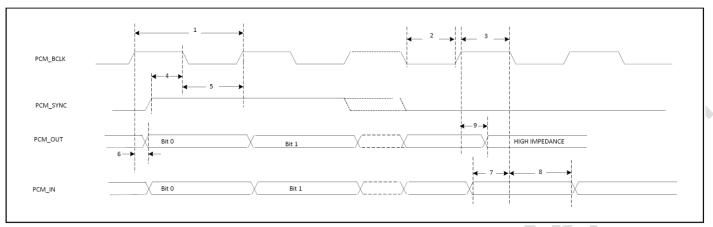
PCM Timing Diagram (Short Frame Sync, Master Mode)

	Reference Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency	10		12	MHz
2	PCM bit clock low	41			ns
3	PCM bit clock high	41			ns
4	PCM_SYNC delay	0		25	ns
5	PCM_OUT delay	0		25	ns
6	PCM_IN setup	8			ns
7	PCM_IN hold	8			ns
8	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0		25	ns



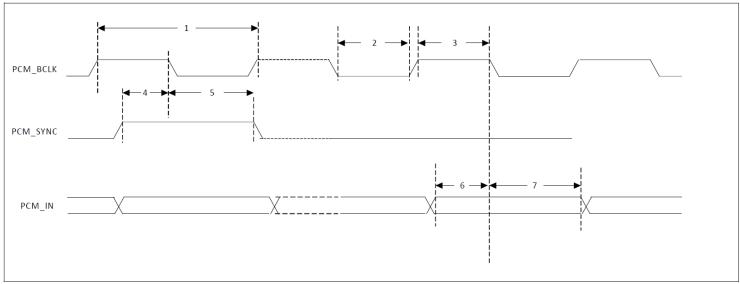
PCM Timing Diagram (Short Frame Sync, Slave Mode)

	Reference Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency			12	MHz
2	PCM bit clock low	41	1		ns
3	PCM bit clock high	41			ns
4	PCM_SYNC setup	8			ns
5	PCM_SYNC hold	8			ns
6	PCM_OUT delay	0		25	ns
7	PCM_IN setup	8			ns
8	PCM_IN hold	8			ns
9	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0		25	ns



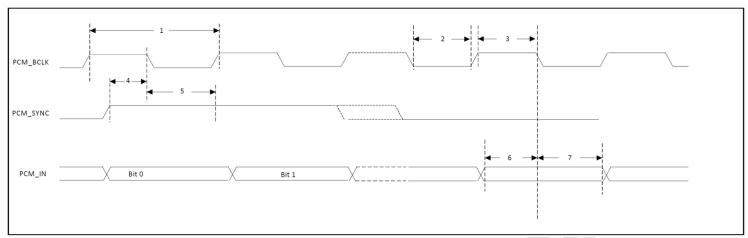
PCM Timing Diagram (Long Frame Sync, Master Mode)

	Reference Characteristics	Minimum	Typical	Maximum	Unit	
1	PCM bit clock frequency			12	MHz	
2	PCM bit clock low	41			ns	
3	PCM bit clock high	41			ns	
4	PCM_SYNC delay	0		25	ns	
5	PCM_OUT delay	0		25	ns	
6	PCM_IN setup	8			ns	
7	PCM_IN hold	8			ns	
8	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0		25	ns	



PCM Timing Diagram (Long Frame Sync, Slave Mode)

	Reference Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency			12	MHz
2	PCM bit clock low	41			ns
3	PCM bit clock high	41			ns
4	PCM_SYNC setup	8			ns
5	PCM_SYNC hold	8			ns
6	PCM_OUT delay	0		25	ns
7	PCM_IN setup	8			ns
8	PCM_IN hold	8			ns
9	Delay from rising edge of PCM_BCLK during last bit period to PCM_OUT becoming high impedance	0		25	ns



PCM Burst Mode Timing (Receive Only, Short Frame Sync)

	Reference Characteristics	Minimum	Typical	Maximum	Unit
1	PCM bit clock frequency			24	MHz
2	PCM bit clock low	20.8			ns
3	PCM bit clock high	20.8			ns
4	PCM_SYNC setup	8			ns
5	PCM_SYNC hold	8			ns
6	PCM_IN setup	8			ns
7	PCM_IN hold	8			ns

PCM Burst Mode Timing (Receive Only, Long Frame Sync)

	Reference Characteristics	Minimum	Typical	Maximum	Unit	
1	PCM bit clock frequency			24	MHz	
2	PCM bit clock low	20.8			ns	
3	PCM bit clock high	20.8			ns	
4	PCM_SYNC setup	8			ns	
5	PCM_SYNC hold	8			ns	
6	PCM_IN setup	8			ns	
7	PCM_IN hold	8			ns	

3.4.2 PCle

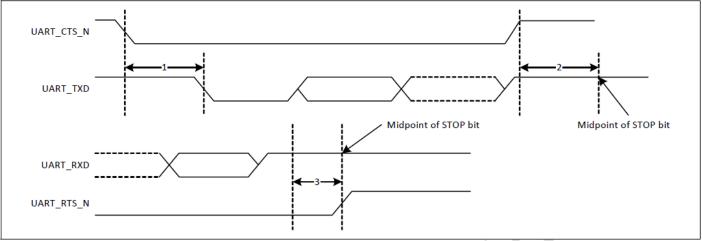
The PCI Express (PCIe) core on the AW-CM240NF is a high-performance serial I/O interconnect that is protocol compliant and electrically compatible with the PCI Express Base Specification v3.0 running at Gen1 speeds. This core contains all the necessary blocks, including logical and electrical functional subblocks to perform PCIe functionality and maintain high-speed links, using existing PCI system configuration software implementations without modification.

Organization of the PCIe core is in logical layers: Transaction Layer, Data Link Layer, and Physical Layer. A configuration or link management block is provided for enumerating the PCIe configuration space and supporting generation and reception of System Management Messages by communicating with PCIe layers.

Each layer is partitioned into dedicated transmit and receive units that allow point-to-point communication between the host and AW-CM240NF device. The transmit side processes outbound packets whereas the receive side processes inbound packets. Packets are formed and generated in the Transaction and Data Link Layer for transmission onto the high-speed links and onto the receiving device. A header is added at the beginning to indicate the packet type and any other optional fields.

3.4.3 UART Interface

The AW-CM240NF includes a single UART for Bluetooth. The UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a baud rate selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.


UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through the AHB interface through either DMA or the CPU. The UART supports the Bluetooth 4.0 UART HCI specification: H4, a custom Extended H4, and H5. The default baud rate is 115.2 Kbaud.

The UART supports the 3-wire H5 UART transport, as described in the Bluetooth specification ("Three-wire UART Transport Layer"). Compared to H4, the H5 UART transport reduces the number of signal lines required by eliminating the CTS and RTS signals.

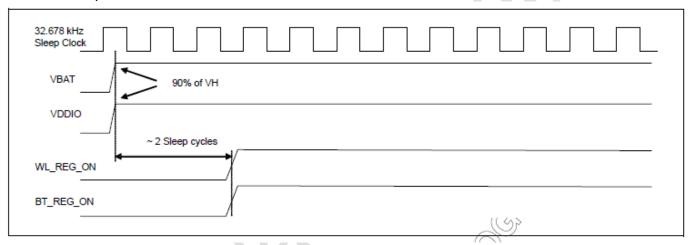
The AW-CM240NF UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP). It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.

Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic baud rate detection, and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The AW-CM240NF UARTs operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2%.

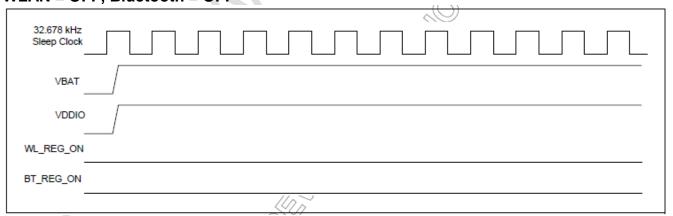
UART Timing

	Reference Characteristics	Minimum	Typical	Maximum	Unit
1	Delay time, UART_CTS_N low to UART_TXD valid	-		1.5	Bit periods
2	Setup time, UART_CTS_N high before midpoint of stop bit	-		0.5	Bit periods
3	Delay time, midpoint of stop bit to UART_RTS_N high	-	-	0.5	Bit periods

UART Timing Specifications

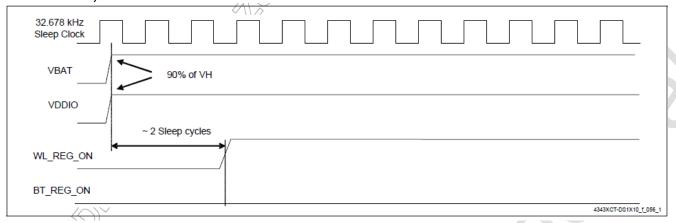


3.5 Power up Timing Sequence

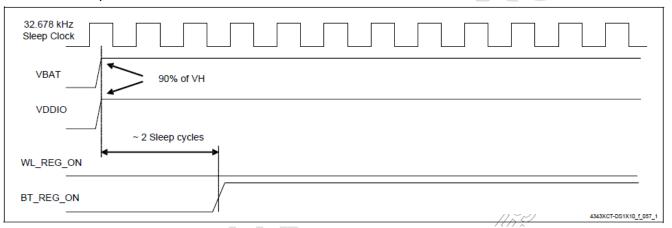

The AW-CM240NF has three signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various operational states. The timing values indicated are minimum required values; longer delays are also acceptable. Note:

- For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay between consecutive toggles (where both signals have been driven low). This is to allow time for the CBUCK regulator to discharge. If this delay is not followed, then there may be a VDDIO in-rush current on the order of 36 mA during the next PMU cold start.
- VBAT should not rise 10%-90% faster than 40 microseconds. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.

WLAN = ON, Bluetooth = ON



WLAN = OFF, Bluetooth = OFF



WLAN = ON, Bluetooth = OFF

WLAN = OFF, Bluetooth = ON

3.6 Power Consumption*

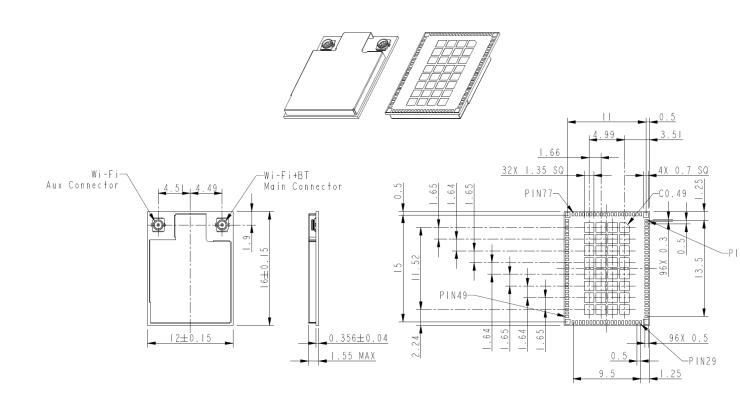
3.6.1 WLAN

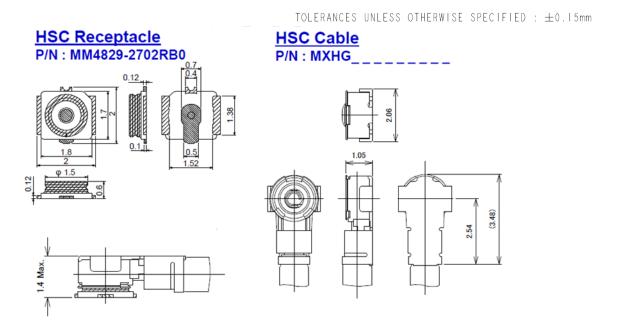
No.	Item			3.3V_VBAT=3.3V			
				Max.		Avg.	
Band		BW (MHz) RF Power (dBm)	RF	Transmit		Receive	
(GHz)	Mode			Max.	Avg.	Max.	Avg.
2.4	11b@1Mbps	20	16	366.4	357.5	94.5	93.2
	11g@54Mbps	20	14	314.1	311.2	92.8	92.3
	11n@MCS7 SISO	20	13	301.3	299.6	92.7	92.3
	11n@MCS15	20	13	493.9	492.3	115.7	115.3
	11n@MCS7 SISO	40	11	294.3	292.8	108.6	108.0
	11n@MCS15	40	11	466.2	465.3	145.1	144.4
	11a@54Mbps	20	13	317.4	316.7	107.5	107.0
5	11n@MCS7 SISO	20	12	310.0	309.2	108.3	107.5
	11n@MCS15	20	12	491.4	489.5	136.4	135.9
	11n@MCS7 SISO	40	10	307.4	306.8	123.7	122.9
	11n@MCS15	40	10	489.0	487.8	164.6	163.6
	11ac@MCS9 NSS2	80	8	507.0	505.3	220.0	219.0

Current Unit: mA

3.6.2 Bluetooth

No.	Mode	Packet Type	RF Power (dBm)	3.3V_VBAT=3.3V		
				Max.	Avg.	
1	Sleep	n/a	n/a	0.22	0.20	
2	Transmit	DH5	1.7	25.5	24.8	
		LE	1.1	19.8	19.5	
3	Receive	DH5	n/a	17.0	16.8	
		LE	n/a	16.5	16.4	


Current Unit: mA


^{*} The power consumption is based on Azurewave test environment, these data for reference only.

4. Mechanical Information

4.1 Mechanical Drawing

30

FORM NO.: FR2-015_A Responsible Department: WBU Expiry Date: Forever The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

5. Packaging Information

5.1

AFFIX PACKING LABEL

5.2

5.3

PINK BUBBLE WRAP

5.4

AFFIX PACKING LABEL

5.5

1 Carton= 5 Boxes

5.6

