

FORM NO.: FR2-015_ A

AW-HM593

IEEE 802.11ah Wireless LAN Module

Datasheet

Rev. C

DF

(For STD)

Expiry Date: Forever

Features

General

- Support programmable operation between 850 ~ 950MHz
- Support single-stream data rate up to 32.5Mbps (MCS=7, 64-QAM, 8MHz channel, 4 uSec GI)
- Support channel width options of 1/2/4/8 MHz
- Support Modulation and Coding Scheme (MCS) levels MCS 0-7 and MCS 10
- Modulation: BPSK & QPSK, 16-QAM & 64-QAM
- Support 1 MHz duplicate mode

Host interface

- SDIO 2.0 (slave) Default Speed (DS) at 25MHz
- SDIO 2.0 (slave) High Speed (HS) at 50MHz
- Support for both 1-bit and 4-bit data mode
- Support for SPI mode operation

Standards Supported

IEEE Std 802.11ah-2016 compliant

Security Features

- AES encryption engine
- Hardware support for SHA1 and SHA2 hash functions (SHA-256, SHA-384, SHA-512)

- WPA3 including protected management frames (PMF)
- Opportunistic Wireless Encryption (OWE)

Expiry Date: Forever

Peripheral Interfaces

- SDIO/SPI, I2C and UART
- Support for STA and AP roles

Revision History

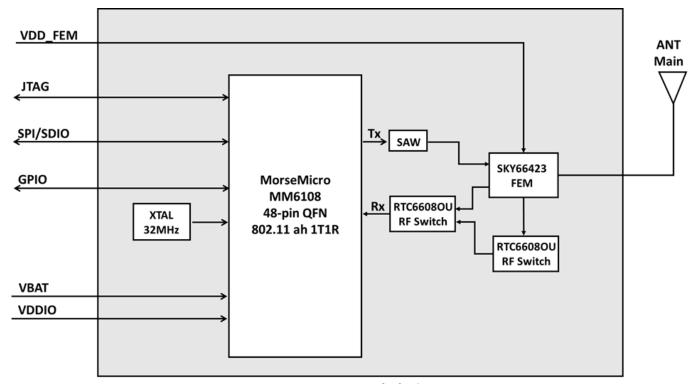
Document NO: R2-2593-DST-01

Version	Revision Date	DCN NO.		Description	Initials	Approved
Α	2022/06/29	DCN026640	•	Initial version	Daniel Lee	N.C. Chen
В	2023/12/14	DCN030777	•	Modify Block Diagram	Daniel Lee	N.C. Chen
С	2024/05/21	DCN031435	•	Add Tx/Rx Spec.	Daniel Lee	N.C. Chen

Table of Contents

Features	2
General	2
Host interface	2
Standards Supported	2
Security Features	2
Peripheral Interfaces	2
Revision History	3
Table of Contents	4
1. Introduction	5
1.1 Product Overview	5
1.2 Block Diagram	6
1.3 Specifications Table	
1.3.1 General	7
1.3.2 WLAN	7
1.3.3 Operating Conditions	9
2. Pin Definition	10
2.1 Pin Map	10
3. Electrical Characteristics	13
3.1 Absolute Maximum Ratings	13
3.2 Recommended Operating Conditions	13
3.4 Timing Sequence	
3.4.1 SDIO Bus Timing	14
3.4.2 SPI Bus	15
3.4.3 UART Bus	15
3.4.4 I2C Bus Timing	16
3.5 Power Consumption	17
3.5.1 Transmit Power Consumption	17
3.5.2 Receive Power Consumption	17
4. Mechanical Information	18
4.1 Mechanical Drawing	18
5 Package information	10

1. Introduction


1.1 Product Overview

AzureWave Technologies, Inc. introduces the pioneer of the IEEE 802.11ah WIFI stamp module --- **AW-HM593**. The **AW-HM593** is an IEEE 802.11ah Wi-Fi module that operates in the Sub 1GHz license-exempt band, offering longer ranger and higher data rate for internet of things (IoT) applications. The **AW-HM593** enables streamlined data transfer interoperability with existing Wi-Fi networks while meeting up to 1KM long range data transfer with low power consumption requirements.

The **AW-HM593** integrated Morse Micro MM6108 and external RF front end module (FEM) which can increase transmission power. MM6108 supports SDIO 2.0 compliant slave interface and SPI mode operation, and many peripherals such as general I2C, UART and GPIOs. In addition, its MAC supports for STA and AP roles.

1.2 Block Diagram

AW-HM593 Block Diagram

1.3 Specifications Table

1.3.1 General

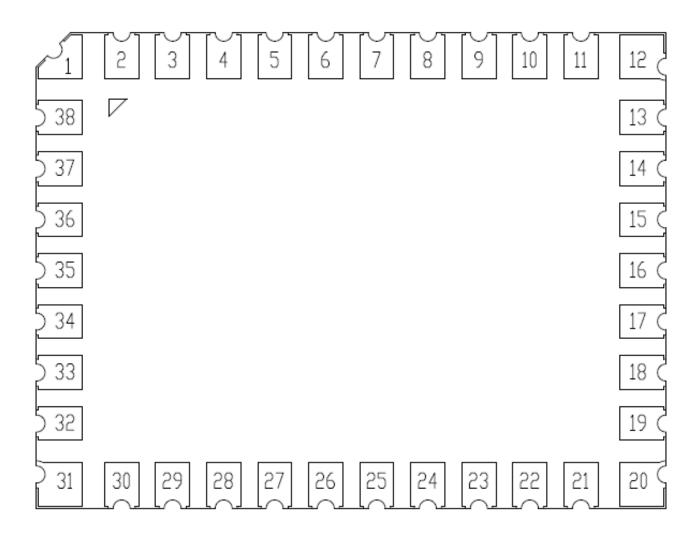
Features	Description
Product Description	IEEE 802.11ah Wireless LAN Module
Major Chipset	Morse Micro MM6108 (48-pin QFN)
Host Interface	SDIO/SPI
Dimension	14mm x 18.5mm x 2.25mm (Tolerance remarked in mechanical drawing)
Form Factor	Stamp module, 38 pins
Antenna	 For Stamp Module, "1T1R, external" ANT Main: TX/RX
Weight	1.0g

1.3.2 WLAN

Features	Description				
WLAN Standard	IEEE 802.11ah				
Frequency Rage	US (903.5 – 926.5 MHz))			
Modulation	OFDM, BPSK, QPSK, 16-QAM, 64-QAM				
Channel Bandwidth	1/2/4/8 MHz				
		Min	Тур	Max	Unit
	MCS0 (1/2 MHz) @EVM≦-5dB	18	20	22	dBm
Output Power (Board Level Limit)*	MCS0 BW-4MHz 906MHz (Ch8) @EVM≦-5dB	18	20	22	dBm
	MCS0 BW-4MHz 914MHz (Ch24) @EVM≦-5dB	18	20	22	dBm

	MCS0 BW-4MHz 926MHz (Ch48) @EVM≦-5dB	15	17	19	dBm	
	MCS0 BW-8MHz 908MHz (Ch12) @EVM≦-5dB	18	20	22	dBm	
	MCS0 BW-8MHz 916MHz (Ch28) @EVM≦-5dB	18	20	22	dBm	
	MCS0 BW-8MHz 924MHz (Ch44) @EVM≦-5dB	17	19	21	dBm	
	MCS7 (1/2/4/8 MHz) @EVM≦-27dB	14	16	18	dBm	
				1		
		Min	Тур	Max	Unit	
	MCS0 (1 MHz)		-104	-100	dBm	
	MCS0 (2 MHz)		-101	-97	dBm	
Receiver Sensitivity	MCS0 (4 MHz)		-99	-95	dBm	
receiver densitivity	MCS0 (8 MHz)		-95	-91	dBm	
	MCS7 (1 MHz)		-87	-81	dBm	
	MCS7 (2 MHz)		-84	-78	dBm	
	MCS7 (4 MHz)		-81	-75	dBm	
	MCS7 (8 MHz)		-78	-72	dBm	
Data Rate	 1 MHz Bandwidth: up to 3.333Mbps 2 MHz Bandwidth: up to 7.222Mbps 4 MHz Bandwidth: up to 15Mbps 8 MHz Bandwidth: up to 32.5Mbps 					
	AES encryption eng	ine				
	■ Hardware support for SHA1 and SHA2 hash functions (SHA-256,					
Security	SHA-384,SHA-512)					
	■ WPA3 including protected management frames (PMF)					
	 Opportunistic Wireless Encryption (OWE) 					
	= Opportunistic vincious Energybrion (OVVE)					

^{*} If you have any certification questions about output power please contact FAE directly.


1.3.3 Operating Conditions

Features	Description			
Operating Conditions				
Voltage	VBAT: 3.3V VDD_FEM: 3.3V VDDIO: 3.3V			
Operating Temperature	-40℃~85 ℃			
Operating Humidity	less than 85%R.H			
Storage Temperature	-40℃~90 ℃			
Storage Humidity	less than 60%R.H			
ESD Protection				
Human Body Model	+/-1000V (RF Input pin.38), +/-2000V (All pins except RF Input)			
Changed Device Model +/-500V (All pins)				

2. Pin Definition

2.1 Pin Map

PIN DEFINED(TOP_VIEW)

AW-HM593 Pin Map (Top View)

2.2 Pin Table

Pin No.	Definition	Basic Description	Voltage	Туре
1	GND	GROUND		GND
2	GND	GROUND		GND
3	GND	GROUND		GND
4	MM_JTAG_TCK	JTAG clock		I
5	MM_JTAG_TDI	JTAG data input		I
6	NC	No Connection		
7	MM_JTAG_TMS	JTAG mode selection		I
8	MM_JTAG_TRST	JTAG reset		I
9	MM_JTAG_TDO	JTAG data output		0
10	NC	No Connection		I
11	MM_GPIO10	General purpose I/O		I/O
12	GND	GROUND		GND
13	MM_GPIO9	General purpose I/O		I/O
14	MM_GPIO8	General purpose I/O		I/O
15	MM_GPIO7	General purpose I/O		I/O
16	MM_SD_D1	SDIO Data pin 1		I/O
17	MM_SD_D0	SDIO Data pin 0		I/O
18	MM_SD_CLK	SDIO Clock pin (input)		I
19	VDDIO	I/O supply Input		Power
20	GND	GROUND		GND
21	MM_SD_CMD	SDIO Command pin		I/O
22	MM_SD_D3	SDIO Data pin 3		I/O
23	MM_SD_D2	SDIO Data pin 2		I/O

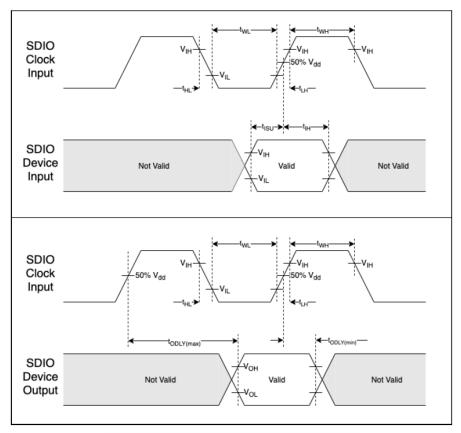
24	MM_GPIO6	General purpose I/O		I/O
25	VBAT	3.3V power supply	3.3V	Power
26	GND	GROUND		GND
27	MM_GPIO5	General purpose I/O		I/O
28	MM_GPIO4	General purpose I/O		I/O
29	MM_GPIO3	General purpose I/O		I/O
30	MM_GPIO2	General purpose I/O		I/O
31	GND	GROUND		GND
32	VDD_FEM	Front End Module power input	3.3V	Power
33	MM_GPIO1	General purpose I/O		I/O
34	Busy	WiFi Busy		I/O
35	MM_RESET_N	Reset (active low)		I/O
36	MM_WAKE	WAKE from sleep		ı
37	GND	GROUND		GND
38	ANT	RF IN/OUT		I/O

3. Electrical Characteristics

3.1 Absolute Maximum Ratings

Symbol	Parameter	Minimum	Typical	Maximum	Unit
VDD_FEM	Front End Module power input	-0.5	-	5.5	V
VBAT	3.3V power supply	-0.5	-	4.3	V
VDDIO	I/O supply Input	-0.5	-	4.3	V
T _{stg}	Storage temperature	-40	-	90	$^{\circ}\!\mathbb{C}$

3.2 Recommended Operating Conditions


Symbol	Parameter	Minimum	Typical	Maximum	Unit
VDD_FEM	Front End Module power input	3.0	3.3	3.6	V
VBAT	3.3V power supply	3.0	3.3	3.6	V
VDDIO	3.3V I/O supply Input	1.8	3.3	VBAT	V
TAMBIENT	Ambient temperature	-40	25	85	$^{\circ}\!\mathbb{C}$

3.3 Timing Sequence

3.3.1 SDIO Bus Timing

The SDIO clock rate supports up to 50MHz. The device always operates in SD high speed mode.

Parameter	Min	Max			
Clock parameters					
Clock frequency	0MHz	50MHz			
Clock low time (t _{WL})	7ns				
Clock high time(t _{WH})	7ns				
Clock rise time (t _{LH})		3ns			
Clock fall time (t _{HL})		3ns			
Inputs on CMD, DAT lines to device	e from host				
Input setup time (t _{ISU})	6ns				
Input hold time (t _{IH})	2ns				
Outputs on CMD, DAT lines from d	evice to host				
Output delay (t _{ODLY(max)})		14ns			
Output hold time (t _{ODLY(min)})	2.5ns				
Total system capacitance for each line		40pF			

3.3.2 SPI Bus

The SPI clock rate supports up to 50MHz. The SPI bus timing is identical to the SDIO bus timing, where MOSI and MISO are considered input and output timing, respectively, in the SDIO timing specification.

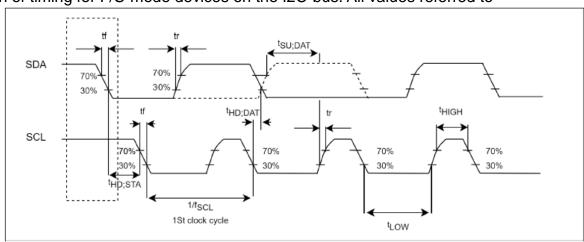
The SPI bus defaults to clock idling at logical 0 (CPOL=0), and data is launched and captured on the positive edges of the clock, as per SDIO high-speed mode. It may be configured to behave like CPHA=0 (drive output on negative edge, sample on positive edge) after being initialized.

3.3.3 UART Bus

Two universal asynchronous receiver/transmitter (UARTs) are available and provide a means for serial communication to off-chip devices. The UART cores are as-provided by the SiFive IP repository. The UART peripheral does not support hardware flow control or other modem control signals, or synchronous serial data transfers.

We will clock the UARTs with a maximum clock speed of 30MHz (TBD), meaning maximum baud of the UART will be around 30Mbaud or 30Mbits/s if a divisor of 0 is specified.

Pin	Name	Default Function	I/O Function
15	MM_GPIO7	GPIO	UART1 Tx
24	MM_GPIO6	GPIO	UART1 Rx
29	MM_GPIO3	GPIO	UART0 Tx
30	MM_GPIO2	GPIO	UART0 Rx



3.3.4 I2C Bus Timing

An I2C master interface is available. It consists of two lines, SDA and SCL, which are bidirectional, connected to a positive supply voltage via a current-source or pull-up resistor.

Pin	Name	Default Function	I/O Function
27	MM_GPIO5	GPIO	I2C SCL
28	MM_GPIO4	GPIO	I2C SDA

Definition of timing for F/S-mode devices on the I2C-bus. All values referred to

 $V_{\text{IH(min)}}(0.3V_{\text{DD}})$ and $V_{\text{IL(max)}}(0.7V_{\text{DD}})$ levels.

Danamatan	Standard-mode		Fast-mode	
Parameter	Min	Max	Min	Max
Clock frequency(f _{scL})	0	100kHz	0	400kHz
Fall time of both SDA and SCL $(t_{\mbox{\scriptsize f}})$	-	300ns	20x (V _{DD} /5.5V)	300ns
Rise time of both SDA and SCL signals(t,)	-	1000ns	20ns	300ns
Data hold time (t _{HD;DAT})	5.0us	-	-	-
Data set-up time (t _{su;DAT})	250ns	-	100ns	-
LOW period of the SCL clock	4.7us	-	1.3us	-
HIGH period of the SCL clock	4.0us	-	0.6us	-
Hold time- START,first clock is generated after this(t _{HD,STA})	4us	-	0.6us	-

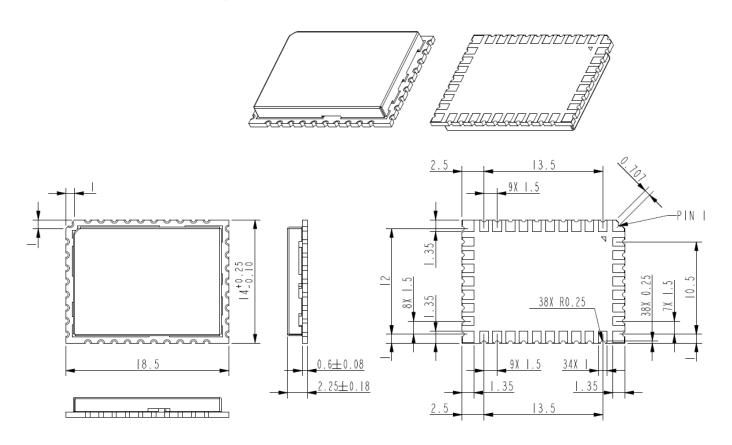
3.4 Power Consumption

3.4.1 Transmit Power Consumption

Band	Modulation		DUT Condition	VBAT = 3.3V, VDD_FEM = 3.3V		
(MHz)		BW (MHz)		VBAT (mA)	VDD_FEM (mA)	
				Avg.	Avg.	
915	MCS0	1	Tx @ 20 dBm	68.5	140.4	
		2		68.3	124.3	
		4		71.7	108.2	
		8		78.7	92.2	
	MCS7	1	Tx @ 16 dBm	59.8	80.2	
		2		57.7	60.1	
		4		61.8	52.7	
		8		69.6	49.2	

^{*} The power consumption is based on AzureWave test environment, these data for reference only.

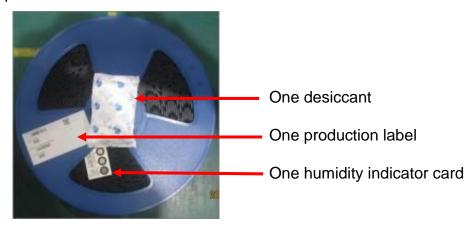
3.4.2 Receive Power Consumption


Dand	Modulation	BW (MHz)	DUT Condition	VBAT = 3.3V, VDD_FEM = 3.3V		
Band (MHz)				VBAT (mA)	VDD_FEM (mA)	
				Avg.	Avg.	
915	MCS0	1	Continuous Rx @ -95 dBm	40.4	4.8	
		2	Continuous Rx @ -92 dBm	43.2	4.8	
		4	Continuous Rx @ -89 dBm	50.2	4.8	
		8	Continuous Rx @ -86 dBm	66.5	4.8	
	MCS7	1	Continuous Rx @ -77 dBm	41.0	4.8	
		2	Continuous Rx @ -74 dBm	43.7	4.8	
		4	Continuous Rx @ -71 dBm	49.9	4.8	
		8	Continuous Rx @ -68 dBm	62.5	4.8	

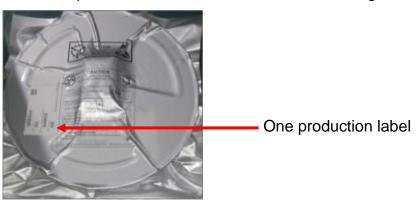
^{*} The power consumption is based on AzureWave test environment, these data for reference only.

4. Mechanical Information

4.1 Mechanical Drawing



TOLERANCE UNLESS OTHERWISE SPECIFIED: ±0.1mm



5. Packing Information

- 1. One reel can pack 1000pcs
- 2. One production label is pasted on the reel, one desiccant and one humidity indicator card are put on the reel

3. One reel is put into the anti-static moisture barrier bag, and then one label is pasted on the bag

4. A bag is put into the anti-static pink bubble wrap

19

FORM NO.: FR2-015_A Responsible Department: WBU Expiry Date: Forever The information contained herein is the exclusive property of AzureWave and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of AzureWave.

5. A bubble wrap is put into the inner box and then one label is pasted on the inner box

One production label

6. 4 inner boxes could be put into one carton

7. Sealing the carton by AzureWave tape

8. One carton label and one box label are pasted on the carton. If one carton is not full, one balance label pasted on the carton

Example of carton label		ZureWave ureWave Technologies Inc.	
	AzureWave P/N	AW-HM593	1
	Customer	由業務提供]
	Customer P/N	由業務提供]
	Customer PO	由業務提供]
	Description	AW-XXXXXX	
	QTY	1200 pcs	
	C/N		
	N.W.	G.W.]
	RoHs		
Example of box label	BOX0012018		

Example of production label	P/N: AW-HM593 D/C: 1309 PCK NO.: PCKN00069097 GTY: 294 BAG SEAL DATE:	
Example of balance label	尾 数 Balance	